Monthly Archives: December 2013

Gaia: Planets and Parallax

In six hours’ time, A Soyuz rocket will blast of from Guyana with the hope of delivering a €1billion Christmas present to astronomers across the world. That present will be Gaia, ESA’s flagship science mission, which hopes to revolutionise how we look at the galaxy around us by providing a 3D map of a billion stars and finding hundreds of new exoplanets.

BbyFhB7CUAAR6PG

So what is Gaia? It is essentially the most sensitive camera ever to be pointed at the heavens. That may sound the same as most space telescopes, but its specifications mean it will be able to pinpoint the location of stars with accuracy previously only dreamed of. Using a 1.5m mirror and a Gigapixel CCD camera, it will image more than a billion stars at least 70 times over a 5 year mission to provide the most accurate catalogue of stars in the Milky Way ever seen.

It is not the sensitivity of the telescope that is extraordinary, however, but rather its angular resolution. Consider the previous such mission, Hipparcos. It was capable of resolving objects tens of thousands of times closer together than the human eye, for example even from 200km away, it’s camera was capable of spotting two lights placed only a millimetre apart. This corresponds to the order of milliarcseconds, or 1/3600000th of a degree. Gaia, on the other hand, will be able to resolve stars mere microarcseconds apart. That is equivalent to being able to read 20pt text from 30,000km above Earth, or resolving two bright lights only 170m apart at the distance of Pluto.

parallax
Astronomical Parallax

What this amazing technological shift means is that Gaia will not only be able to compile the most accurate catalogue of star positions in history, it will also be able to map them in 3D. It may seem strange, but measuring the distance to a far-away point source like a star is nearly impossible. For nearby stars the shift of Earth’s position during the course of the year can act as a sort of cosmic depth perception, with the location of nearby stars wobbling subtlety between July and January, depending on how far away they are. It is this Parallax effect that, thanks to the incredible resolution of Gaia, will enable the distance to 1% of the stars in our galaxy to be precisely measured.

463px-Solar_system_barycenter.svg

But when this effect due to the motion of Earth is corrected for, what motion is left? It’s likely the star will be moving in some direction through the galaxy relative to our solar system. This straight-line speed is the star’s ‘proper motion’ and can be as high as 10.3 arcsecs per year. But that’s not the only thing Gaia might spot. Stars are also tugged at by the gravitational pull of all nearby objects. This is most prominently done by planets in the stars vicinity. For example, an observer 30 lightyears away would see the sun shift by nearly 500µas due to the orbit of Jupiter. That means Gaia would see the Sun perform a slow ellipse across the sky every 5 years each time Jupiter orbits.

GaiaPlants
Planets Gaia can detect bounded in Blux lines. Upper line: Sun-like star. Lower line: M-dwarf

The biggest signals come from Gas Giant planets circling far from their stars, and Gaia will be able to search the nearest 400,000 stars for such worlds. Due to its 5-year mission, it will find these Jupiter analogues between 1 and 4AU. With any luck, more than 1000 candidates will be found; potentially doubling the current crop of exoplanets. And with Kepler dead and TESS still on the drawing board, Gaia may well become our best tool to mine the skies for new planets.

Even more interesting for exoplanet astronomers is that Gaia will find planets missed by other detection techniques. Both the transit and radial velocity methods are more sensitive to close-in planets, and have such discovered hundreds of bloated Hot Jupiters circling close to their star. Gaia, on the other hand, will be able to scan regions much further from the star. This will potentially answer the question of whether these Hot Jupiter systems are common or if other solar systems are more like our own stellar back

Another remarkable feat that Gaia will be able to achieve is pinning down the exact mass of some exoplanets. Worlds discovered by radial velocity give us an estimate of their size based on the to-and-fro motion of the star due to planets. Astrometry by Gaia will be able to give the side-to-side motion and determine in what precise inclination the planets are in. By tying down the planets orbit like this, their mass can be precisely determined.

BbuDr1PCUAAMvga

Gaia, if successfully launched in the next few hours, will be capable of incredible feats. First and foremost, it’s incredible parallax measurements will turn astronomy from a two-dimensional star map into a complex three dimensional system where the distances to almost every object is known precisely. And tagged on for free are another thousand potential exoplanets to add to the exponentially growing list of alien worlds! If all goes well in Guyana at 9am, a collective sigh of relief will emanate from astronomers worldwide, and it might just signal the start of a new era of astronomy.

Infographic on Gaia:

BbRalyjCcAAtMAs

A Planet for Every Star?

Astronomers have now found an astonishing 1000 exoplanets. But that pales in comparison to the 100 billion stars in our galaxy. So how can we say whether planets are the norm? And is it possible to find a star that is definitively a planet-free zone?

The current crop of alien worlds comes from a limited selection of well-studied stars. Rather than try to directly spot what is the equivalent of a fleck of dust in a spotlight, astronomers use changes in the light of the star itself to tease out the signal of a planetary companion.

eso_planet

This can be done in a variety of ways, each of them with their own shortcomings. Often the method of discovery itself means that only a tiny selection of flukily-aligned planets will have the potential of being discovered.

For example, the Kepler spacecraft was staring at over 100,000 stars to try to detect the drop in light as exoplanets crossed their star. However, the probability of the average planet making this crossing is extraordinarily low. A planet orbiting at 1AU (the same distance from its star as Earth) will be found in only 1 in 200 such systems! To put that in perspective; for each Earth-like planet found by Kepler, 199 more stars with planets exactly like our own will have been be tossed aside.

faceonRV

The other common detection technique, known as radial velocity, is marginally less wasteful. This uses the to-and-fro of the star imprinted in the colour variations (or spectra) to find the delicate gravitational tug of a planet. While this works for planets in most orbits, if they happen to circle their star in a face-on orientation, no signal will be received at all. For both cases, this means that even if no planetary signal is detected at all, we can’t definitively say there isn’t one there.

These techniques are also only sensitive to planets larger than a certain size. While the Kepler mission was able to find Earth-sized worlds, similar transit surveys from the ground will only ever be able to find large Gas Giants. Any Mars or Mercury-sized planets will be missed entirely. Radial Velocity is also limited by size, with Neptune or Super-Earth-sized worlds the current limit. These searches are both also bias towards planets close to their stars. To detect worlds at Earth distances is a much trickier prospect than those scraping the surface of their stars.

So many planets will be missed entirely. How can we talk with any certainty about the number of planets in the whole Galaxy?

DistPlanets

Well, because the exact problems with these techniques are known, astronomers can estimate how many planets we expect to find. If we know the number of stars studied and the probability of an orbit being perfectly aligned, we can use the number of planets found to estimate the number of planets around all stars.

For example, a study of gravitational lensing by planets showed that on average every star has a planet larger than 5 Earth Masses from 0.5 to 10AU. Similar studies have also been done with Kepler, finding basically the same number: More than one planet bigger than Earth from 0 to 2AU around every star. It should also be noted that these results also only cover a tiny portion of potential planets. Distant Jupiters or low-mass rocky planets were missed completely. So, as our searches become more and more sensitive to small and distant worlds, those numbers can only go up. It’s likely that on average every star in the Milky Way has its own Solar System with multiple planets.

But what about lonely, planet-less worlds? There are certain to be stars without any planetary material wandering the cosmos. For example, those dislodged from triple-star systems, as can happen due to gravitational resonance and scattering, might not hold onto any planetary material. But until we’re able to study a star in perfect detail and definitively say no planets exist, we are forced to stick with what has become the default setting: all stars have planets, and it’s just a matter of time until we find them.

From Nuclear Weapons to Death Stars

A low autumn sun illuminates white-tinted grasses and lichens, each covered in beads of ice from the first deep frosts of winter. A lone Arctic Fox treads lightly on freshly fallen snow, making its way south towards the treeline where the last minks might be grazing. This is the desolate Kola Peninsula in northern Russia which, on October 30th 1961, witnessed the single most destructive force humanity has ever released.

Tsar_photo11

It was named the Tsar Bomba: a 58 megaton nuclear bomb. When it exploded 4km above Siberia, it released more than 2000 times more energy than the weapons used at Hiroshima and Nagasaki in 1945, sent a mushroom cloud to the edge of space, broke windows 900km away and sent seismic waves around the earth more than three times. This was the single most energetic event in human history, releasing as much energy as the UK uses in more than 10 weeks in the blink of an eye.

While such a destructive event is not cause for celebration, it is remarkable to think about the rapid technological advancement that led led to it. It was only 50 years previously that the nucleus of atoms been discovered. 100 years earlier and electricity and magnetism were still mysterious, far-from-unified concepts that could capture public imaginations but certainly seemed to have little public applications.

image004

From this rapid development, it would seem to be that our species is likely in its infancy as a technologically capable civilisation. The vastness of space, and remarkable frequency of earth-like planets in the universe, also suggest that we are not the only ones. With trillions upon trillions of potential habitable worlds in the universe, it is almost impossible to conceive that other, remarkably advanced civilisations are not out there.

Given the track record of our own species, and our ability to turn technology into devastatingly destructive weapons, it only takes a short leap of the imagination to picture hyper-intelligent aliens doing the same. Except, rather than the desolate russian tundra, they might use interstellar space for their weapons testing grounds. While I would be the first to admit that this sounds like science fiction, there is certainly a case that such explosions might well be observable. In that one fateful second in 1961 the Tsar Bomba generated millions of times more energy than all of the power stations on Earth. Maybe, shining like a short-lived new star, there could be evidence of these interstellar ballistic missiles out there in the cosmos.

deathstar-sanctuary-moon

The interesting thing is that we haven’t seen anything of the sort. Famously the Fermi Paradox asks why, if intelligent life is out there, hasn’t Earth been colonised yet? Maybe the non-detection of great alien weapons, or Death Star Paradox, has a simpler answer: either hyper-intelligent civilisations wipe themselves out in adolescence, or they don’t seem too intent on destruction. And, with the world becoming a more peaceful place over the last few decades, we can be hopeful the answer is the latter.