Tag Archives: Exoplanet

EPIC-1166 b: a Neptune-mass planet with Earth-like density

How do planets form? Can they migrate through their solar system? What are they made of? What can modify a planet over time? Is Earth, or our solar system, special?

These are all questions that those in our field seek to answer. And there seems, to me at least, to be an easy way of figuring them out: Find More Planets.

NASAK2As last week’s news of 1200 new planets showed, the Kepler spacecraft is an excellent way of doing that. Even in it’s new and slightly more limited mode of “K2”, nearly 200 planet candidates and at least 50 bona fide planets have so far been detected.

I am involved in a collaboration between 7 European universities to search for and confirm planets in K2. So far this has resulted in half a dozen papers & planets including the 2-planet K2-19 system. Today I can add one more to that tally: EPIC212521166 b (or 1166 for short).

Finding and Confirming EPIC-1166 b

Initially, we searched the 28,000 stars observed by K2 in field 6; scouring the lightcurves with computer programmes and by eye to spot the repeated dips that might be the tiny signals of planets passing in front of their stars. A handful of candidates including 1166* stood out as promising targets, and we took those few stars to the next stage: radial velocities.

Transit Lightcurve EPIC1166
Transit Lightcurve of EPIC1166

Using the high-resolution spectrograph HARPS, we searched for the star’s to-and-fro motion that orbiting planets should create. In the case of 1166, we saw a strong signal on the same timescale as we expected from the transits.

Radial Velocities of EPIC-1166
Radial Velocities of EPIC-1166

Then, using a code called “PASTIS”, we modelled the radial velocities, the transit lightcurve and information about the star it orbits simultaneously to pin down exactly what 1166 could be. Almost unquestionably, it was a planet, which was a relief. But we can also tell the size of this planet: it has a radius of only 2.6±0.1 times that of Earth, but a mass a whopping 18±3 times our planet. Combined they give EPIC-1166 b a mass similar to Neptune but a radius more than 30% smaller.

Super-Earth or mini-Neptune?

This makes 1166 b a member of an interesting group of planets: between the size of our solar system’s largest terrestrial planet (Earth) and it’s smallest gas giant (Neptune). So which one of these does our planet most closely resemble?

Mass-Radius diagram showing EPIC-1166 compared to other exoplanets
Mass-Radius diagram showing EPIC-1166 compared to other exoplanets

From it’s density (5.7g/cm3), EPIC-1166b might seem to be closer to Earth than the puffy Neptune (1.64g/cm3). However, densities are misleading for objects so large. The high pressures in the interior of an 18 earth-mass (Me) planet are enough to crush rock and iron to much higher densities than their terrestrial values. This effect is so large that, for a 2.6Re planet to have earth-like composition (70% rock, 30% iron), it would need to be around 50 earth masses! That’s a density nearly three times higher than Earth’s, and clear evidence that 1166 b is not quite as Earthlike as first impressions.

EPIC1166_Compositions

Instead, it seems like our planet must contain something other than just rock and iron. The most obvious candidate is hydrogen gas. This is so light and fluffy that at atmosphere consisting of only 1% the mass of 1166 b (0.2Me) is enough to cover an 18Me earth-like core in a 0.4Re-deep atmosphere, and produce the mass and radius that we see. Alternatively, water could be another component that could drag the density down. For example, if 1166 b was 50% water and 50% rock, it could also explain the composition perfectly. However, this scenario is unlikely, and a hydrogen-dominated atmosphere seems to be the more likely option.

Getting a handle on the interior composition of a planet is interesting, but in EPIC-1166 b’s case it is especially perplexing. Planet formation models show that, once a planet grows to around 10Me, it should begin to rapidly draw in gas from the surrounding gas disc until it becomes a gas giant like Jupiter. In the case of 1166 b, we also have reason to think it likely migrated inwards to its current position through that very gas disc. This is because it is not close enough for tides to affect its position, and orbits in a circular (rather than eccentric) orbit; both pointers to disc migration.

So how did it avoid becoming a gas Giant? One way might be if EPIC-1166 b was a gas giant, but lost all its atmosphere due to UV and X-Rays emitted from its star. However, at 0.1AU and with a surface temperature of 600K (much less than many exoplanets), 1166 b is too far away to have been affected by activity.

impactMy favourite way of solving this puzzle (and it is pure speculation) is through giant impacts between planets. This could both grow a large planet at 0.1AU after the initial planet formation stage, and also blast away a large hydrogen atmosphere. The fact that the star is much older than the Sun (8±3 Gyr) and that we do not see any other planets in the system, further adds to the possibility that this was once a multiplanet system (like K2-19b and c), which destabilised, crashed together, and resulted in a single dense mini-Neptune.

The jury is still out on it’s precise formation. But with EPIC-1166 b orbiting a bright star, there is hope that we can re-observe the planet and tie down it’s size, composition and history even further. And, together with the diverse and growing crop of exoplanets, this new mini-Neptune will surely help to answer those important open questions in our field.

And if that fails we can always fall back on the exoplanet mantra: Find More Planets.


The paper was submitted to A&A and released onto arXiv (http://arxiv.org/abs/1605.04291) on May 13th 2016.

*EPIC-1166 b was initially (and independently) detected by Suzanne Aigraine and released on twitter.

Gliese 581d is an ex-planet

Gliese581TopTrump
Exoplanet poster child

If, in 2009, you asked 18-year-old me to name an exoplanet, then Gliese 581d would have been it. Discovered by an American team of astronomers in 2007, it was, for a long time, the poster child for exoplanetary science. Not only was the first rocky world ever found in the habitable zone of its star where life-friendly temperatures are found, it was also relatively nearby (for astronomy standards) at only 20 light years.

Astronomers used the radial velocity technique to find the first planet around Gliese 581 as far back as 2005. This method relies on the gravitational pull that a planet has on a star as it orbits. This wobble is detectable in the spectra of the starlight, which gets doppler shifted as the star moves back-and-forth, allowing the period and mass of an orbiting planet to be determined. While the first planet, ‘b’, orbited close to the star with a period of only 5.4 days, it was joined by two cooler (and more habitable) planets, ‘c’ and ‘d’ in 2007. This was soon followed in 2009 by Gliese 581e, the smallest planet in the system on an even shorter (3.1d) orbit.

RVgif
Movie credit: ESO

Things started to get even more confusing in 2010 when observers at the Keck observatory announced two more planets (‘f’ and ‘g’) orbiting at 433 and 37 days respectively. This would put ‘g’ between ‘c’ and ‘d’ and right in the middle of the star’s habitable zone. However, new observations of the star with a Swiss telescope showed no such signal. Was there a problem with the data, or could something else be mimicking these planets?

article-2003824-006ED8C000000258-933_634x565[1]
Other stars, just like our sun, have extremely active surfaces
One problem comes when we consider the star itself. Just like our own sun, most stars are active, with starspots skimming across the surface and convection currents in the photosphere causing noise in our measurements. These active regions can often mimic a planet, suppressing the light from one side of the rotating star and shifting the spectra as if the star itself were moving back-and-forth. Add to that the fact that, like planets, activity comes and goes on regular timescales and that cool stars such as Gliese 581 are even more dynamic than our pot-marked sun, and the problem becomes apparent.

The first planet to bite the interstellar dust was ‘f’. At 433 days, its orbit closely matches an alias of the star’s 4.5-year activity cycle, and it was quickly retracted in 2010. Similar analyses with more data also suggested Gliese 581g was also likely to be an imposter, but the original team stuck by this discovery. For the last 3 years, this controversy has simmered, until last month all the data available for Glises-581 was re-analysed by Paul Robertson at Penn State. This showed that not only is Gliese 581g not a planet, but that the poster child itself, Gliese 581d, was also an imposter.

CorrectedPeriodogram
The signal strength of any potential planets with (red) and without (blue) activity correction.

To do this, the team took all 239 spectra of GJ581 and analysed not just the apparent shift in velocity, but the atomic absorption lines themselves. Using the strength of the Hα absorption line as an indicator for the star’s activity, they compared this to the residual radial velocity (after removing the signal from planet b). This showed that there was a relatively strong correlation between activity and RV, especially over three observing seasons when the star was in a more active phase. They also found that this activity indicator varied on a 130 day timescale.

581_orbits[1]
The new system with only 3 planets
When the team removed the signal from stellar activity, they found that planets ‘c’ and ‘e’ were even more obvious than in previous searches. However the signal for planet ‘d’ dropped by more than 60%, way below the threshold needed to confirm a planet. Even more remarkably, ‘g’ does not appear at all. So what exactly caused this ghostly signal. The planet’s orbital period of 66 days gives us a clue -it is almost exactly half that of the star’s 130 day rotation cycle, so with a few fleeting starspots and the right orientation, a strong planet-like signal at 66 days results.

This case of mistaken identity is a sad one, but thanks to the incredible progress of our field in the last 5 years, their loss barely makes a dent in the number of potentially habitable exoplanets known. Instead, it acts as a warning for planet-hunters: sometimes not all that glitters is gold.

The results are also explained in exquisite detail at Penn State University’s own blog, including an excellent timelapse showing how our understanding of the Gl 581 system has changed over time

Goldilocks Worlds: An Infographic

NatGeoInfographic
Full, clickable “Goldilocks Worlds” infographic available from National Geographic here

Today the National Geographic released an extremely interesting infographic on exoplanets. It shows all 1000 confirmed planets and 700 validated Kepler Candidates and their vital statitistics. The x-axis gives the amount of light from it’s star, the y-axis has mass, each planet’s radius can be seen from the size of each point and the clickable version even displays each planet’s name. Most prominent on the diagram is the Goldilocks square containing a handful of  exoplanets “just right” for life along with Earth and Mars.

Credit: Planetary Habitability Lab
Credit: Planetary Habitability Lab

As an infographic it is a beautiful and succinct way of showing what we know about planets around other stars. It makes two key facts about exoplanet detection plainly obvious: that most of the planets we currently know are big and hot; and that despite these limitations we are gradually pushing towards the detection of habitable, Earth-like planets. The position of newly-discovered Kepler 186f, a centimetre or so to the right of Earth, is testament to that.

But how does the science itself hold up? Well, as any good science teacher will say, always label your axes and use error bars. But we can let that slide as it is an infographic and not an undergraduate project.

MassvsRadiusRelation
Mass and Radius just don’t get along (from Butler & Marcy, 2014)

How about the position of each point though? Well, the graph uses planetary mass as y-axis parameter. However for almost all of the low-mass planets displayed (ie. the Kepler candidates) the mass is almost completely unknown. All is known is the radius, and this can be used to give a rough estimate of the mass. And when I say rough, I mean extremely rough. For each radius value selected, the range of potential masses varies by more than 3 Earth masses even for Earth-sized planets! That could push a planet currently within the “Just right” square such as Kepler 283c into the ‘too large’ area and vice-versa.

Even that box should not be taken as given. The idea of a habitable zone varying with its distance from a star makes sense: too hot and water begins to boil away. Too cold and it freezes. But there are a huge number of things that could change those limits including tidal locking, atmospheric composition, surface reflectivity, atmospheric density, etc. To account for all of these is almost impossible, and to plot them all on a 2D plot certainly is. Current models (and the vertical lines you see here) get around this by assuming almost every parameter is Earth-like. For different sized planets, or those with unusual atmospheres, that assumption could break down (although work is certainly being done).

KopparapuHZmasses2014
The variation of habitable zone with planet mass (Kopparapu et al, http://arxiv.org/pdf/1404.5292 )

The habitable limits of planetary mass are even more like guesswork. Certainly, gas giants and tiny asteroids would appear less habitable than Earth mass planets, but the position of the limits at 0.1 and 10Me are arbitrary. There is no real reason why a large super-Earth or small sub-Mars could not support life, and certainly very little science has so far been done on this area so far.

So, despite displaying the main information well, this infographic gives the impression that we know a lot more than we actually do about both the limits of life and the characteristics of the planets that could hold it.

But, as was pointed out on twitter, this is not a scientifically published figure, but an infographic. It is something designed to spread knowledge in its simplest, uncomplicated form. And for that, it is fantastic.

What can PLATO do for exoplanet astronomy?

As readers of my previous post will no doubt know; the future looks grim for exoplanetary science. Kepler is dead, Hubble will soon follow and we face a long wait before the next generation of planet-hunting instruments. But this week, exoplanet astronomers glimpsed another ray of hope. The next £500million of European Space Agency money looks likely to go to PLATO; an incredible exoplanet-hunting mission set to be even better than Kepler.

PlatoConcept

With an array of 34 telescopes mounted on a sun-shield, PLATO hopes to do things a little differently from both Kepler and TESS. Like those missions, it too will monitor thousands of stars looking for the minute dip in light caused by the passage of a planet in front of its parent star. However, it is in both breadth and depth that PLATO excels; with the combined light of dozens of cameras allowing 5% of the sky to be monitored to incredible accuracy at any one time.

Platofield
Plato’s likely field of view, with 2-3yr stops in red

More than a million stars could be scrutinised for Earth-sized planets by Plato, giving an expected planet haul an order of magnitude higher than Kepler. Plato will also not be tied down into staring at the same stars, instead monitoring 50% of the sky on eight 30-day positions and two longer 3-year fields. This will allow dozens of Earth-like planets with potentially habitable temperatures to be discovered.

The main criticism of the now-defunct Kepler mission was the faintness of these stars (between magnitude 7 and 17). This meant the vast majority of its planetary candidates were impossible to follow up and confirm. The wide field and large array of cameras on Plato allow the brightest stars to be monitored (mag 4-16). That will mean even tiny Earth-sized worlds found by Plato can be followed up and confirmed by ground-based telescopes.

Astroseismology
The concept of Astroseismology

This ability to survey bright stars also allows astronomers to perform extremely sensitive measurements of the stars themselves. By using variations in starlight caused by ripples on the star’s surface, astronomers can accurately pin down not only the size of the star but also the age of the star system. This means, not only can Plato find exoplanets around bright stars, but it can also determine the size and age of many of these planets to a precision only previously dreamed of.

The Transiting Exoplanet Survey Satellite (TESS), to launch in 2017, seems superficially to be a similar mission to Plato. It will potentially discover hundreds of planets before Plato even gets off the ground in 2024. However, the limited sensitivity of its cameras mean it is completely blind to Earth-like worlds around sun-like stars. Astroseismology is also off-limits for TESS, meaning the size of any worlds it does discover will be highly uncertain. Unlike Plato, it will also move between patches of sky every 30 days, allowing only hot, short-period planets to be found.

The-Earth-Moon-System
The only truly habitable planet yet known

With all other new telescopes, both in space and on the ground, limited to finding super-Earths around small stars, Plato is the only mission on the table truly capable of discovering an Earth-like world around a star like our Sun. And by targeting bright stars that allow atmospheric follow-up, it is not impossible to think that, as well as the first truly habitable planet, Plato could find the first inhabited one too.

However, the decision process for ESA’s Cosmic vision (M3 class) is still ongoing. It would be highly unusual for ESA member states to overturn the mission recommended by the science committee, but in the political cauldron that is ESA anything is possible. If Plato does get through unscathed, it will bring riches not just to the universities, countries and industries involved, but more significantly to the world of science as a whole.

———————————————————————————————————

The paper detailing mission design and expected science results can be found at: http://arxiv.org/abs/1310.0696 . The official ESA mission page has similar information at: http://sci.esa.int/plato/

PlatoCandidates
A comparison of Kepler Candidate planets (the majority of which are too faint for follow-up observations) against likely PLATO candidates (significantly brighter, eg with a lower magnitude)