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Talk Structure
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e The problem of classifying exoplanet candidates from space-based transit surveys

e (eneral Overview of Machine Learning & Neural Networks and their use in exoplanet
Astronomy

e Our project on Kepler and TESS



The problem:
From raw data to planets
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Kepler/TESS pipeline wonosoom >

Wu+2010
Smith+2012, Stumpe+2012

Target Pixel File (TPF)

Aperture Photometry
& Systematics Correction
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Kepler/TESS pipeline = NG

Wu+2010

Target Pixel File (TPI

Relative Brightness

2180
BJD - 2454833

Period [days]

Relative Brightness

Hours from Midtransit
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Kepler/TESS pipeline wonosoom >

Wu+2010

Smith+2012, Stumpe+2012 Jenkins+2010, Seader+2013

Target Pixel File (TPF)

Aperture Photometry
& Systematics Correction

Transiting Planet Search (TPS)
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Threshold Crossing Event (TCE)

Batalha+2013, Burke+2014, Rowe+2015, Mullally+2015
Exoplanet Catalogues

NASA EXOPLANET ARCHIVE

Follow-up observations Candidate Classification
7 In Kepler: TCE Review Team [human vetting]

Pz ™~

Confirm (or statistically
validate) planets



Manual vetting

Used for Kepler on all Quarters (later used as labels for machine learning)
Current TESS team: 21 vetters. >200 human hours per sector
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Manual vetting

Can a machine do better?

LAM

LABORATOIRE D'ASTROPHYSIQUE
DE MARSEILLE

HUGH OSBORN



Classification with Machine Learning



Classes >



Sample to be

ORI
_ ilﬂ,‘u@lﬂvﬁnﬁ

HERN (I
Decision Tree |
Classifier Are they an astronomer?
Yes No
Do they have a beard?
Yes No
Hair longer than 5cm?
Yes No
German?
Yes No
Dan (Hugh, etc)

" Predicted class




Decision Tree

Classifier

Sample to be
classified

Does it have a secondary eclipse

Yes No

Is the modelled albedo >1

Yes

No

Eclipsing Binary

BI ddEIp ng Htht
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Machine Learning

<) English

Where is the train station?

«) Spanish

¢Donde esta la estacion de tren?

Translation

Self-driving cars

Image recognition
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Machine Learning
Deep Learning

Neural Nets

Convolutional
Neural Nets




Decision Trees
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Green (G) or Red (R)

e Decision trees are the simplest form of machine learning
e The thresholds and position of each decision node are
varied until error is minimised.

Problems:

e Decision thresholds are linear (eg 1D)
e Requires input of ‘features’ derived from data




Robovetter - Decision Tree

“Robovetter” - Thompson et al 2017.

Decision tree classifier used to produce Kepler’s
homogenous catalogue in DR25.

Used features processed from lightcurve.

Achieved a recall of around 80% on injected data.
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Random Forests

e FEach tree sees random subset of whole dataset
e FEach decision step uses random selection of available features.



e N3
Random Forests e

HUGH 0SBORN

e While each tree splits the data “linearly”,

averaging of many trees approximates
non-linear splits in data.
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R.F.S in exoplanet atmospheres R N

Squares: Model (binned)
Circles: WASP-12b data

Marquez-Neila et al (2018)

Random Forest for atmospheric retrieval.

Inputs: HST transmission spectra of WASP-12b.
Outputs: 5-parameter model of exoplanet atmosphere.
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Autovetter - Random Forests

The Kepler team also produced a random forest -
MacAuliff et al, (2015)

Used 230 features calculated from candidate
lightcurve, model fits, etc.

3 output classes: planet, astrophysical dip (e.g. EBs)
& non-transiting phenomena
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94.15% accuracy & 91.2% average precision (on
human-labelled data)

Non-Transiting Phenomena Vote Fraction
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Exoplanet Classification with KNNs R N

KIC 10790706
10g, (T op) = -2.3313
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Norm. Flux

Thompson et al (2015).

'
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Rel. Flux (ppt)

'
w

KIC 8651551
log, (T, op) = -2.4093

Used a “K-Nearest Neighbours” (KNN)
unsupervised approach.
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Rel. Flux (ppt)
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Norm. Flux

KIC 10971944
10g, (T p) = -2.2925

Takes average of nearest labelled
features.
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Used as inputs binned & normalised
phase-folded transits.
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Norm. Flux

KIC 11670605
Periqd 36.97d
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Neural Networks S

HUGH 0SBORN

e Neural Networks are not inherently “linear” - can better map irregular parameter spaces

e Hidden layers allow “abstraction” - acts like a new dimension in which to “fold” the (lower
dimensionality) data.
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Unsupervised Learning (SOMs) N

Armstrong et al, 2016

Self-Organising Map (SOM) - a type of neural
network which reduces dimensionality without
any supervision.

_ _ Detached EBs
Creates isolated regions of Contact EBs
JURCTI Ja- RR Lyraes
self-similar input data Delta Seutis

Performed on 4 K2 campaigns.

Pixel position used an input into Random
Forest.

SOM X Pixel




Self Organising Maps for Exoplanets /\;;_

Armstrong et al (2017)

SOM and random forest applied to Planet
candidates in K2 & Kepler

~19% accuracy on Kepler planets EBs
Planets !
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Convolutional Neural Networks

Machine Learning

& — & — 737 — Il

Input Feature extraction Classification Output

Deep Learning
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Feature extraction + Classification




Convolutional Neural Networks
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~

FEATURE LEARNING CLASSIFICATION
e Raw image “convolved” with range of filters (which themselves are trained with back propagation)
e Enables Feature extraction from the raw data (although raw data may need preprocessing)
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CNNs for Atmospheric Retrieval

Waldmann (2015) & Zingales (2018) - RoBErt using o Eolimidn
Neural networks == -

Cobb, Angerhausen, et al (subm.)
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Transit Depth (R,/R;)

Wavelength (um)




Ground-based transits with RF & CNNs

Schanche et al. (2018)

Classified WASP planet candidates with
both Random Forest and Convolutional
Neural Network.

CNN gives better average precision, but
random forest performs best on planets:

MEarth used Neural Networks to determine
which “triggers” the telescopes should
follow, leading to LHS 1132 b Dittman et al.
(2017)

Percent Correct Predictions

68.2602 10.2665

o 2.08333

4.15879 0.378072 91.6824

8.67679

15.9091

EB/Blend

2.08333

WASP disposition

\

1.51844 0.867679

5.56426

2.08333

3.78072

88.9371

WASP disposition

P EB/Blend

Vv

- 8.43373

- 7.50507

+ 10.8959
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CNN Confusion Matrix (fraction)

82.1497 4.51056 7.96545 5.37428

88.253 0.301205 | 3.01205
- 87.2211 5.27383

5.56901 12.8329 70.7022
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CNNs for Exoplanet Detection N
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Two parallel papers using neural
networks to detect exoplanets:

Lucker et al, (2017)
Pearson et al, (2017)

Phase Folded

Difficult as neural networks cannot
natively learn “periodicity”.

Period (d)

Neither deal with classifying real ' Tre: 16.34

Data: 16.55

planets vs false positives

00 02 04 06 08 1.0
BJD-2454833 (days) Phase
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Shallue et al 2018

Astronet - Shallue & Vanderburg (2018)

e Deep Convolutional Neural Net

o Inputs are “local” and “global” transit view of each candidate (TCE)
e Two disjoint 1D convolutional columns + 4 fully connected layers

e Qutput is binary classifier in the range [0,1]

(c) TCE 5130380-2

e T

Local View (1 x 201)

Global View (1 x 2001)




New planets from CNNs

Dattilo et al (Yesterday)

Using the methods of Shallue &
Vanderburg, they detected new
candidates in K2, including two
statistically validated planets.
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EPIC 246078672 b

-1 0 1
Hours from Midtransit
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Our FDL project:
Can we do better?




2018 FDL Exoplanet Team Mentors: .‘

e Sclem:e Expertlse —>J ‘Smith, D. Caldwell, J. Jenkms
. "~ (NASA Ames/SETI Instltute)
Daniel Angerhausen
' ««  (University of Bern / GS
o Machme Learmng—> C. Raissi (INRIA),
: Yarin Gal (Oxford)
o Gompute Power — Massimo Mascaro -
(Google Cloud

@ S{ XPRIZE Google Cloud @im ,,.,_7:,,. kx == «
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Paper 1: Classifying Kepler Candidates ...

HUGH 0SBORN

16,000 Threshold Crossing Events (TGEs) from Kepler DR24
Labelled by human vetters
~29% planets & ~75% false positives
Followed Shallue & Vanderburg to preprocess the data:
o Detrending lightcurve
o Phase-folding onto candidate period
o Binning to “global” & “local” view

Ansdell, loannou, Oshorn, Sasdelli, et al. (2018)



Classifying Kepler Gandidates

Centroid Time-series

o Position of center of light in TPF as function of time
o Important for identifying EBs and BEBs

Local View Global View

Exoplanet
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0.0 0.2 0.4 0.6 0.8 1.0 0.0
Phase

Ansdell, loannou, Oshorn, Sasdelli, et al. (2018)

LOCAL VIEWS GLOBAL VIEWS

(2 x 201) (2 x 2001)

\ / light curves u
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LOCAL VIEWS GLOBAL VIEWS

(2 x 201) (2 x 2001)

Classifying Kepler Gandidates e T
Stellar Properties
e From KOI catalog: mass, radius, density, surface gravity, metallicity e | eOe

* ((maxpooL-7-2 © 1 (OmaxpooL52 )l

CONV-5-64

o Important for identifying, e.g., giant star eclipsing binaries

CONV-5-64 5
: (MAXPOOL-5-2 )

CONV-5-128
CONV-5-128

KOI-977 [Teruyuki et al. 2014] .
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Ansdell, loannou, Osborn, Sasdelli, et al. (2018) | Smonc
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Performance on Kepler oo
' : : Better model
Centroids & Stellar info both improve - performance

performance

Cross validation & model ensembling also
improved performance

Best classification of any metric on Kepler
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Planet Accuracy | Avg. Precision

== = Astronet

Autovetter 94.15% 97.19% 0] | === Exonet
=== Exonet-Stellar
Astronet 95.8% 95.5% m— Exonet-Centroids

Exonet 97.5% 98.0% 0.4 0.5 0.6 0.7 0.8 0.9 10

Recall




Performance on Kepler

Improved Performance for Lowest SNR Transits
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Future missions like

TESS & PLATO will
focus on small planets

15-20% gains in recall for
Earth-sized planets



Paper 2: Classifying TESS Data

10t
Orbital period, d

e 4 Simulated sectors.
e Pixel-level injections of signals, processed with the full

TESS pipeline .

e ~16,000 candidates, with only ~14% planets elar Temperatire, K

Junk Planets
Slg nals ————— Transit depth, ppm
Osborn, Ansdell, loannou, Sasdelli, et al. (subm)

Planet Radius, R g



: : © ADDITIONAL
:  LOCAL VIEWS GLOBALVIEWS @ @ ‘b Bl

Classifying TESS Data VT

CONV-5-16 CONV-5-16

Modified the model of Ansdell et al (2019):

CONV-5-32 D CONV-5-32
CONV-5-32 : 2 CONV-5-32

o Added additional transit-derived information

CONV-5-64

e Reduced bins from 2001 to 1007 cousii

. MAXPOOL-E-Z .

e Used multi-class modelling | S

* 1 (MAXPOOL5-2

OUTPUT

Osborn, Ansdell, loannou, Sasdelli, et al. (subm) (ot Newsses
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Data Augmentation s N

HUGH 0SBORN

101_all_Big: Precision vs. Recall, AP=0.927

e Augmentation modifies input data to create “new”
data for the neural net, preventing overfitting

Avg. Precision

Exonet: no augmentation 85.2%

Exonet - Gaussian 89.6% E
Exonet - xmirror 90.4%
Exonet - xshift 90.5% = all
= all - x_shift
Exonet - all 92.7% 21 =all - mirror

= all - Gaussian Noise

Osborn, Ansdell, loannou, Sasdelli, et al. (subm)



Balanced Batch Sampling

e Unbalanced data is difficult to learn as models tend to predict the majority class.
e Re-balancing means that each epoch sees same number of samples from each

/ UNK: 0.25

BEB: 0.15

EB: 0.19 / BEB: 0.25

UNK EB BEB PL
- - - I uNK I EB BEB [ PL
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Loss per Epoch Average Precision per Epoch Accuracy per Epoch

validation
training

I

1

1
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Osborn, Ansdell, loannou, Sasdelli, et al. (subm)
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Performance on TESS Simulations o, >

Accuracy | Recall

Binary Planet 91.8 87.8
Not Planet 97.6 98.5
3-class Planets 90.4 90.1 0.8
S
EBs 95.1 95.1 B
(0]
a
Unknown 94.8 94.9 0.7
4-class | Planets 89.1 88.8
2-class
EBs 87.4 917 . 3-class
’ 4-class
BEBs 88.5 817 Multimodel
. . . Mean
Unknown 94.6 95.5 Median

0.7 0.8
Recall




Performance as a function of SNR R N

e Recall deteriorates at low SNR

e /0% accuracy in 1<SNR<8.5 range

e “Unknown” consistently accurate - model has
learnt systematic features




3-class model
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o o o
o)} ~ (o0}
1 1 1

Precision

o
w
!

UNK_Med
UNK_Av
PL_Med
PL_Av
EB_Med
EB_Av
BEB_Med
BEB_Av

0.2

0.4

Recall

0.6

PL

gg Ground Truth

LAM

LABORATOIRE D'ASTROPHYSIQUE
DE MARSEILLE

HUGH 0SBORN




LAM

LABORATOIRE D'ASTROPHYSIQUE \

Comparison with Ansdell et al, 2019 A
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Average Precision on planets
Kepler | 98.5%

< Why?

TESS | 95.6% y

e Labels: Human vetting vs. Simulated ground truth

e Minimum transits: Kepler > 3 - vs - TESS > 2

e “Near misses” - 196 “false positives” are planets "
o 44% from monotransits

o 25% from period confusion A Monotransit flagged as periodic in real TESS data.
e Including “near misses” - planet accuracy from 90.3% to 95.1%




Application to real TESS data

Far faster than other TESS vetting methods!

e ~60 minutes to pre-process lightcurves
e 5 minutes to predict with trained model on one GPU

But real data # simulated data

e Different noise characteristics
e Do injections match reality?
e No “ground truth” to make comparisons

TESS has 2 candidate pipelines producing candidates. Overlap is not perfect.



Application to real TESS data

Planets Known Before Launch

HATS-34b: shows secondary

WASP-18b: b=0.94 (grazing) ‘
All KOs in Sectors 1-5 - \

Recall of 61% on KOIs

KOlIs from QSOP pipeline not

14 t are EBs
in our candidate list We Stiggest are




New predicted planets

>100 new candidates predicted  [Hkalidetiaids
TID389669796

Problems:

- Many giant binaries in
predicted sample

- Some of these targets
share the same period and
epoch - reflections from a
bright binary
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Future steps -
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Train with real TESS lightcurves

o  Problematic: how to inject signals and avoid real transit signals?
o How to replicate instrumental effects many times?

Add Bayesian Uncertainty to network

Follow-up (and hopefully confirm!) predicted candidates f s{{;‘ g
Formulate how PLATO can use CNNs to classify & rank planet ":}‘1/

candidates .

ESA PLATO



Conclusion o >

e Machine Learning enables faster and often more accurate classification of astronomical data

e Qur application to Kepler candidates is the best-performing model yet tested, with an accuracy
on planets of 97.5%

e (Our model on TESS simulated data shows CNNs are a promising method of rapidly classifying
TESS planet candidates without human vetting, achieving between 90 and 95% accuracy.

e Application to real TESS data shows work is still needed, with a recall on KOIs of only 60%.

e |dentified a handful of promising new candidates missed by manual vetters.
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Thanks!
Any Questions

Hugh Oshorn
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Podcast with
Andrew Rushby &
Hannah Wakeford

exo cast



