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● The problem of classifying exoplanet candidates from space-based transit surveys
● General Overview of Machine Learning & Neural Networks and their use in exoplanet 

Astronomy
● Our project on Kepler and TESS





Typical TESS Raw data

“Postage stamps” for target stars



Target Pixel File (TPF)
Aperture Photometry 

& Systematics Correction

Smith+2012, Stumpe+2012

Wu+2010



Simulated TESS Data



Target Pixel File (TPF)
Transiting Planet Search (TPS)

Threshold Crossing Event (TCE)

Jenkins+2010, Seader+2013

Aperture Photometry 
& Systematics Correction

Smith+2012, Stumpe+2012

Wu+2010





Target Pixel File (TPF)
Transiting Planet Search (TPS)

Threshold Crossing Event (TCE)

Jenkins+2010, Seader+2013

Candidate Classification
In Kepler: TCE Review Team [human vetting]

Batalha+2013, Burke+2014, Rowe+2015, Mullally+2015
Exoplanet Catalogues

Aperture Photometry 
& Systematics Correction

Smith+2012, Stumpe+2012

Data Validation (DV)

Wu+2010

Follow-up observations

Confirm (or statistically 
validate) planets



Used for Kepler on all Quarters (later used as labels for machine learning)
Current TESS team: 21 vetters. >200 human hours per sector



Can a machine do better?
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Is the modelled albedo >1

Yes No

Does it have a secondary eclipse

Yes No

Sample to be 
classified

Decision Tree 
Classifier

Eclipsing Binary



How can we classify with minimal human processing?
With Machine Learning



Translation  Self-driving cars        Image recognition

Machine Learning

Deep Learning

Neural Nets

Convolutional 
Neural Nets



● Decision trees are the simplest form of machine learning
● The thresholds and position of each decision node are 

varied until error is minimised.

Problems:

● Decision thresholds are linear (eg 1D)
● Requires input of ‘features’ derived from data



“Robovetter” - Thompson et al 2017.

Decision tree classifier used to produce Kepler’s 
homogenous catalogue in DR25.

Used features processed from lightcurve.

Achieved a recall of around 80% on injected data.



● Each tree sees random subset of whole dataset
● Each decision step uses random selection of available features.



● While each tree splits the data “linearly”, 
averaging of many trees approximates 
non-linear splits in data.



Marquez-Neila et al (2018)
Random Forest for atmospheric retrieval.
Inputs: HST transmission spectra of WASP-12b.
Outputs: 5-parameter model of exoplanet atmosphere.



The Kepler team also produced a random forest - 
MacAuliff et al, (2015)

Used 230 features calculated from candidate 
lightcurve, model fits, etc.

3 output classes: planet, astrophysical dip (e.g. EBs) 
& non-transiting phenomena

94.15% accuracy & 97.2% average precision (on 
human-labelled data)



Thompson et al (2015).

Used a “K-Nearest Neighbours” (KNN) 
unsupervised approach.

Takes average of nearest labelled 
features.

Used as inputs binned & normalised 
phase-folded transits.



Hidden Layers



Training neural networks

● Quantify how poorly prediction was compared to 
ground truth

● Performance is then “back-propagated” through 
network to weights between neurons.

● These are adjusted such that the updated weight 
should decrease overall loss function - “gradient 
descent”



● Neural Networks are not inherently “linear” - can better map irregular parameter spaces
● Hidden layers allow “abstraction” - acts like a new dimension in which to “fold” the (lower 

dimensionality) data.



Armstrong et al, 2016

Self-Organising Map (SOM) - a type of neural 
network which reduces dimensionality without 
any supervision.

Creates isolated regions of 
self-similar input data
Performed on 4 K2 campaigns.
Pixel position used an input into Random 
Forest.

Detached EBs
Contact EBs

RR Lyraes
Delta Scutis



Armstrong et al (2017)

SOM and random forest applied to Planet 
candidates in K2 & Kepler

~79% accuracy on Kepler planets EBs
Planets





● Raw image “convolved” with range of filters (which themselves are trained with back propagation)
● Enables Feature extraction from the raw data (although raw data may need preprocessing)



Waldmann (2015)  & Zingales (2018) - RoBErt using 
Neural networks
Cobb, Angerhausen, et al (subm.)



Schanche et al. (2018)

Classified WASP planet candidates with 
both Random Forest and Convolutional 
Neural Network.

CNN gives better average precision, but 
random forest performs best on planets:

MEarth used Neural Networks to determine 
which “triggers” the telescopes should 
follow, leading to LHS 1132 b Dittman et al. 
(2017)



Two parallel papers using neural 
networks to detect exoplanets:

Zucker et al, (2017)

Pearson et al, (2017)

Difficult as neural networks cannot 
natively learn “periodicity”.

Neither deal with classifying real 
planets vs false positives



Astronet - Shallue & Vanderburg (2018)

● Deep Convolutional Neural Net
● Inputs are “local” and “global” transit view of each candidate (TCE)
● Two disjoint 1D convolutional columns + 4 fully connected layers
● Output is binary classifier in the range [0,1]



Dattilo et al (Yesterday)

Using the methods of Shallue & 
Vanderburg, they detected new 
candidates in K2, including two 
statistically validated planets.
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Paper 1: Classifying Kepler Candidates

● 16,000 Threshold Crossing Events (TCEs) from Kepler DR24
● Labelled by human vetters
● ~25% planets & ~75% false positives
● Followed Shallue & Vanderburg to preprocess the data:

○ Detrending lightcurve
○ Phase-folding onto candidate period
○ Binning to “global” & “local” view

Ansdell, Ioannou, Osborn, Sasdelli, et al. (2018)



Classifying Kepler Candidates

● Position of center of light in TPF as function of time
● Important for identifying EBs and BEBs

Centroid Time-series

Ansdell, Ioannou, Osborn, Sasdelli, et al. (2018)



Classifying Kepler Candidates

● From KOI catalog: mass, radius, density, surface gravity, metallicity
● Important for identifying, e.g., giant star eclipsing binaries

Stellar Properties

KOI-977  [Teruyuki et al. 2014]

Ansdell, Ioannou, Osborn, Sasdelli, et al. (2018)



Performance on Kepler

● Centroids & Stellar info both improve 
performance

● Cross validation & model ensembling also 
improved performance 

● Best classification of any metric on Kepler

Better model 
performance

Planet Accuracy Avg. Precision

Autovetter 94.15% 97.19%

Astronet 95.8% 95.5%

Exonet 97.5% 98.0%



Improved Performance for Lowest SNR Transits

1.4 R
⊕

1.6 R
⊕

1.9 R
⊕

1.4 R
⊕

1.6 R
⊕

1.9 R
⊕

15-20% gains in recall for 
Earth-sized planets

Transit SNRTransit SNR

Future missions like 
TESS & PLATO will 
focus on small planets



● 4 Simulated sectors.
● Pixel-level injections of signals, processed with the full 

TESS pipeline
● ~16,000 candidates, with only ~14% planets

PlanetsJunk 
signals

Osborn, Ansdell, Ioannou, Sasdelli, et al. (subm)



Modified the model of Ansdell et al (2019):

● Added additional transit-derived information
● Reduced bins from 2001 to 1001
● Used multi-class modelling

Osborn, Ansdell, Ioannou, Sasdelli, et al. (subm)



● Augmentation modifies input data to create “new” 
data for the neural net, preventing overfitting

Osborn, Ansdell, Ioannou, Sasdelli, et al. (subm)

Avg. Precision

Exonet: no augmentation 85.2%

Exonet - Gaussian 89.6%

Exonet - xmirror 90.4%

Exonet - xshift 90.5%

Exonet - all 92.7%



● Unbalanced data is difficult to learn as models tend to predict the majority class.
● Re-balancing means that each epoch sees same number of samples from each



Osborn, Ansdell, Ioannou, Sasdelli, et al. (subm)



Accuracy Recall Av. Precision

Binary Planet 91.8 87.8 95.2

Not Planet 97.6 98.5 99.4

3-class Planets 90.4 90.1 95.6

EBs 95.1 95.1 96.9

Unknown 94.8 94.9 97.7

4-class Planets 89.1 88.8 94.4

EBs 87.4 91.7 94.7

BEBs 88.5 81.7 91.7

Unknown 94.6 95.5 97.8



● Recall deteriorates at low SNR
● 70% accuracy in 7<SNR<8.5 range
● “Unknown” consistently accurate - model has 

learnt systematic features







● Labels: Human vetting vs. Simulated ground truth
● Minimum transits: Kepler ≥ 3 - vs - TESS ≥ 2
● “Near misses” -  196 “false positives” are planets

○ 44% from monotransits
○ 25% from period confusion

● Including “near misses” - planet accuracy from 90.3% to 95.1%

Average Precision on planets

Kepler 98.5%

TESS 95.6%
Why?

A Monotransit flagged as periodic in real TESS data. 



Far faster than other TESS vetting methods!

● ~60 minutes to pre-process lightcurves
● 5 minutes to predict with trained model on one GPU

But real data ≠ simulated data

● Different noise characteristics
● Do injections match reality?
● No “ground truth” to make comparisons

TESS has 2 candidate pipelines producing candidates. Overlap is not perfect.



HATS-34b: shows secondary
WASP-18b: b=0.94 (grazing)

KOIs from QSOP pipeline not 
in our candidate list

Recall of 61% on KOIs

14 we suggest are EBs



>100 new candidates predicted 

Problems:

- Many giant binaries in 
predicted sample

- Some of these targets 
share the same period and 
epoch - reflections from a 
bright binary



● Train with real TESS lightcurves
○ Problematic: how to inject signals and avoid real transit signals?
○ How to replicate instrumental effects many times?

● Add Bayesian Uncertainty to network
● Follow-up (and hopefully confirm!) predicted candidates
● Formulate how PLATO can use CNNs to classify & rank planet 

candidates

ESA PLATO



● Machine Learning enables faster and often more accurate classification of astronomical data
● Our application to Kepler candidates is the best-performing model yet tested, with an accuracy 

on planets of 97.5%
● Our model on TESS simulated data shows CNNs are a promising method of rapidly classifying 

TESS planet candidates without human vetting, achieving between 90 and 95% accuracy.
● Application to real TESS data shows work is still needed, with a recall on KOIs of only 60%.
● Identified a handful of promising new candidates missed by manual vetters.
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