

## Exoplanets and me







#### Outline

- A bit about me
- The basics
- How we find planets
- EPIC-1166
- The future of exoplanets

### How I got here



#### How I got here.









#### How I got here



ASTRONOMY & ASTROPHYSICS



#### Future:









#### What are exoplanets?



## Ancient History of Exoplanets



**Epicurus and Aristarchus** 

## Ancient History of Exoplanets



#### History of Exoplanets



**Bruno** 



Huygens

#### History of Exoplanets



Capt WS Jacob (1855)



Peter Van de Kamp (20th C)



### Finding exoplanets





So how can we find planets at all?

### Radial Velocity



#### Radial Velocity

- First exoplanet 51
  Pegasi b found in 1995
- "Hot Jupiter" class
- 4 day orbit
- 0.5 Jupiter mass







- First transiting planet: HD 209458b in 1999
- Confirmed with Hubble in 2000



- First exoplanet surveys in ~2003
- Found 1500 candidates <sub>0.92</sub>
  and ~200 planets











- >80% of transit signals from ground-based surveys are imposters
- Eclipsing binaries more likely
- Need to confirm with Radial Velocities





#### Transits = Densities

• RVs (mass) + Transit (Radius) = Density



Transits = Atmosphere

 Signal of planetary atmosphere imprinted in starlight during transit







### Microlensing



#### Direct Imaging



Sphere at the









### Kepler













### Kepler Highlights



• Kepler-37b: the smallest exoplanet ever found









Earthlike planets are common

#### Kepler

#### But...

- Most Kepler systems extremely faint (~14<sup>th</sup> magnitude).
- Cannot study atmospheres, masses, compositions, etc.





### The Demise of Kepler







### K2







#### Hugh Osborn





## 1) The Data

Lightcurve detrending





### 2) The Search

- Automated search of all lightcurves for transits
- Looks for multiple transits.





## (Long-period planets)

- Lots of planets found by Kepler beyond 50 days
- Should detect some of these with K2





## (Long-period planets)

 40 candidate planets on longer periods





## WARWICK

## 3) The Candidates

- Look at the candidates by eye.
- Discard false positives
- Rank and send best ones on to follow-up
- My job at Warwick is to run this step.



## WARWICK

## 4) The Star

- Spectroscopy to estimate stellar parameters.
- High-resolution images to check for nearby stars







## 5) Radial Velocities

Use RVs to detect the mass of the planet





## 6) Publish

- 7 publications and 20+ citations so far
- More on the way
- Some examples...





#### K2-19b and c





#### K2-30b and K2-34b



K2-29b

- Young star (400Myr)
- Low-density hot Jupiter





1.004

1.000

Relative flux 0.998 0.996 0.994

0.992

0.990

### EPIC 201702477b

- 8 earth radii... (0.76R<sub>Jup</sub>)
- 21,000 earth masses.

1.002

1.000

0.998

0.996

0.994

0.992

0.990

• Brown dwarf (failed star)





### EPIC212521166b





### EPIC-1166

- K-type star
- Old around 8.5Gyr
- Depleted in metals



No nearby stars



Hugh Osborn



# Hugh Osborn HARPS-N at the TNG telescope in La Palma, Spain Portugal Madrid Spain Morocco Western Sahara

## WARWICK

### EPIC-1166b



### Density

- Radius = 2.6 earths
- Mass = 18 earths
  - gives a density.
- Can explore what it it made of...







## Composition

- More massive planets are gravitationally compressed
- 18 earth mass body has density 50% higher than Earth





## Composition





### EPIC-1166b

- How could it have grown so big?
- Collisions could explain size, lack of thick atmosphere and eccentricity





K2





• 2 more years (160,000 more stars) of K2

### NGTS





- Warwick-led transit survey in Chile.
- Will find Neptunes & super-Earths



NICITIC C' 1

## WARWICK

### Gaia



- Launched in 2012 to survey positions of 1billion stars.
- ~20,000 new giant planets (from 1 to 5AU).

#### **JWST**





- 8m space telescope. Launches 2017
- Will probe atmospheres of exoplanets in amazing detail

## WARWICK

#### **TESS**



- Transit detecting telescope launching in 2018
- 20,000 new giant planets & 500 small (<2R<sub>e</sub>) planets

### E-ELT





- 39m telescope in Chile. Completed ~2024
- Will directly image nearby exoplanets at ~1AU

### **PLATO**





- 28 telescopes in space. Launch ~2026
- RV and Asteroseismology follow-up part of mission

### WFIRST





- Microlensing & transit mission launching ~2027
- Give occurrence rates of planets down to Mars mass















http://exocast.org | itunes | any podcast app



Any Questions? WARWICK



