

# PLATO's Single Transit challenge

- lessons learned from K2 & TESS

#### Hugh Osborn

+ Martti Kristiansen, Magali Deleuil, Alex Santerne



#### SINGLE TRANSITS

Why do we want to find them? How do we find them? How are we sure a signal is real? How do we model them? How many are there? Why are they important for PLATO?

#### SINGLE TRANSITS

- Why do we want to find them? How do we find them? How are we sure a signal is real? How do we model them? How many are there? Why are they important for PLATO?

## Underexplored parameter space





## Opens new frontiers of detection



- Spectra of cold giant planets
- Stable exo-moons
- Ring systems





## Different from compact systems

- Different evolution & migration to compact multiplanet systems.
- Closer to solar system analogues?
- Warm jupiter population could explain hot jupiter migration
- Potentially find planets in the Habitable Zone



## Intersection with Gaia, RVs & Imaging





#### SINGLE TRANSITS

Why do we want to find them? - How do we find them? How are we sure a signal is real? How do we model them? How many are there? Why are they important for PLATO?

#### By-eye



E.g. Amateur planet hunters shown detrended lightcurve. Used in

- Wang et al (2016, Kepler)
- Uehara et al (2017, Kepler)
- LaCourse & Jacobs (2017, K2)



#### Semi-automated detection



Searching candidates in all light-curves using:

- Consecutive low flux measurements
- Transit model matched filter response.

Candidates then vetted with by-eye inspection:

- Light curves, centroid curves, etc.



#### Fully automated detection



Scanned box across Kepler lightcurves

Compared fit of candidates to models for different types of FP: flux drop, variability, box and transit.

**Used injection recovery (820,000 injections)** 

Used SNR limit of 25



#### SINGLE TRANSITS

Why do we want to find them?
How do we find them?

How are we sure a signal is real?
 How do we model them?
 How many are there?
 Why are they important for PLATO?

## False positives



Typically candidates are vetted using



"Tools" used for vetting periodic candidates may fail:

- Periodogram statistics





"Tools" used for vetting periodic candidates may fail:

- Periodogram statistics
- Searches for a secondary (or primary) eclipse







"Tools" used for vetting periodic candidates may fail:

- Periodogram statistics
- Searches for a secondary (or primary) eclipse
- Depth, duration & shape changes between transits







"Tools" used for vetting periodic candidates may fail:

- Periodogram statistics
- Searches for a secondary (or primary) eclipse
- Depth, duration & shape changes between transits

- Duration/Period constraint







#### **Asteroids**

- Affects both TESS & K2
- Lightcurve is ratio of flux in-aperture to background
- Out-of-aperture flux increase causes dip in lightcurve.







#### Reflections

- E.g. Tau Ceti as seen by TESS
- Poor detrending caused dip













#### Instrumental

- Rolling band
- Temperature-dependent electrical crosstalk -
- Flux variations on CCD have ~few hours timescale





#### SINGLE TRANSITS

Why do we want to find them?
How do we find them?
How are we sure a signal is real?

- How do we model them?
How many are there?
Why are they important for PLATO?

#### Modelling single transits





- Radius, as normal, from depth.
- Estimate impact parameter from ingress duration (and estimated Rp/Rs)
- Velocity from chord length and transit duration.
- Period from velocity

Density is key - Gaia helps!

## Period estimation ingredients



$$P_{circ} = \frac{8\pi^2 G}{3} \frac{\rho_{\star}}{v'^3} = \frac{2\pi g}{R_{\star} v'^3}$$

#### Well-constrained stellar density

- Pre-Gaia (e.g. photometry): ep=50%
- Spectra (e.g. logg to 0.1): ep=30%
- With Gaia: ep=15%
- Asteroseismology: ep<10%</li>





## Period estimation ingredients



#### Well-constrained ingress/egress duration

- Directly depends on transit SNR
- Cannot constrain period at SNR=7
- e(Period)  $\alpha$  r<sup>-2.5</sup> small planets unconstrained with lightcurve
- Large planets & longer transits better



## Period estimation ingredients



Correct prior on period (see Kipping et al 2019)

Scales with P<sup>(-8/3)</sup>



## Problems with Modelling



#### **Problems:**

- Grazing eclipses totally unconstrained
- Eccentricity increases uncertainty on period by ~30%.



#### **Period Estimation**



#### **Existing Codes:**

- "Namaste" (Osborn et al, 2016, 2018)
  - o Fits for planetary velocity. Assumes circular orbit
- "Single" (Sandford, Espinoza et al., 2019)
  - Fits for period. Gaia parallaxes for radii/densities. Has eccentricity.
- "exoplanet" (Foreman-Mackey et al, in prep)
  - Easily modifiable to fit single transits.





#### SINGLE TRANSITS

Why do we want to find them?
How do we find them?
How are we sure a signal is real?
How do we model them?

- How many are there? Why are they important for PLATO?

#### Occurrence rates from Fernandes (2019)







## Kepler Single Transits



Using Fernandes occurrence rate, Radii from Gaia and threshold of 10-sigma

230 planets expected



## Kepler Single Transits



Using Fernandes occurrence rate, Radii from Gaia and threshold of 10-sigma

230 planets expected

Yet only 30 detected...



## **K2** Single Transits



Higher number of transit expected in K2 with peak at 70d

- 390 expected in Campaigns 0-19



## **K2** Single Transits



Our K2 Monotransit project:

From >1000 candidates -> ~250 are astrophysical, and ~75 appear planetary.

Periods poorly constrained at the moment.

Includes validated P~10-year planet EPIC248847494b (Giles et al 2018)











# **TESS Single Transits**



### **TESS Single Transits**



232 monotransit expected in S1-13

**Our TESS Monotransit project:** 

From ~600 candidates for S1-12 -> 300 are astrophysical, and ~100 appear planetary.

Includes many bright candidates ripe for RVs (follow-up on-going).



### **TESS Single Transits**



232 monotransit expected in S1-13

**Our TESS Monotransit project:** 

From ~600 candidates for S1-12 -> 300 are astrophysical, and ~100 appear planetary.

Includes many bright candidates ripe for RVs (follow-up on-going)
- see Louise's talk



### **Expectations for PLATO**



Extrapolation from KIC: likely ~640 planets on P>2yrs detectable as singles (at 10-sigma) - 2.5x Kepler.

Many more multi-transiting planets also detectable before a second transit is observed.



### SINGLE TRANSITS

Why do we want to find them? How do we find them? How do we vet them? How do we model them? How many are there?

- Why are they important for PLATO?

## Why PLATO needs singles



- Long-period planets are interesting!
- 2-year stare fields = only 2 transits of exo-Earths
- Simultaneous RV + Plato photometry
- Initiating centroids, short-cadence photometry, imagettes, etc (e.g. P5 sample)



- Interestingness of long period planets:
  - Long-P planets are underexplored (occurrence rates, atmospheres, etc)
  - $\circ$  Unaffected by evolution/migration (closer to solar system analogues?)
  - Habitable Zone planets
  - o Crossovers with populations of planets from Gaia, RV, WFIRST microlensing, and possibly even Direct Imaging

#### **PLATO Necessities:**

- Needed as 2-year stare fields will produce only 2 transits of Earths
- Needed for simultaneous RV + Plato photometry

### False Positives in PLATO



- Improved knowledge of EBs with Gaia DR3 astrometry & RVs.
- Asteroids: some but fewer than TESS/K2
- Reflected light:
  - At L2: effectively none
- Instrumental effects:
  - Per telescope or per telescope group: unlikely to be coherant



\_

### Lessons



Don't expect single transits detected at 7-sigma.

But PLATO's design may limit the number of false positives

#### Need to either:

- Design a single-transit-specific pipeline to detect single transits
- Or make sure a general pipeline works for single transit cases

May need human vetting, or heavy injection-retrieval.

# Thanks