LONG-PERIOD EXOPLANET CANDIDATES FROM COROT, KEPLER, K2 & TESS

Hugh Osborn,
MIT & University of Bern

+ M. Kristiansen, W. Benz, G. Ricker

WHY BOTHER WITH LONG-PERIOD PLANETS?

- Giant planets are more common at the ice line (1-3AU)
- Hot/Warm jupiter formation theories
- Atmospheres of temperate worlds
- Worlds sculpted by formation, not evaporation
- Circumplanetary objects are stable (e.g. moons & rings)

THE OPEN QUESTIONS

- Is it real?
- What kind of a planet is it?
- How can we observe it again?

Answering these problems require **estimating** a period

MODELLING

Information we have:

- Shape and depth of transit
- Stellar information (e.g. density)
- Information from other planets (e.g. constraints on eccentricity of outer candidates and stellar density)
- Minimum period from lightcurve
- Physically-motivated priors on unknown parameters

MODELLING

1) Stellar density (e.g. other planets, Gaia, logg)

2) Radius from depth

- Past efforts:
 - Theory: Yee & Gaudi (2008)
 - K2 candidates Osborn (2016)
 - Period priors Kipping (2018)
- Multinest Sandford (2019)
- Single systems Becker, Giles, etc

from ingress/egress

3) Impact parameter

Velocity ~ transit chord ÷ duration

Period ~ density ÷ velocity³

Marginalise over everything else (e.g. eccentricity)

MONOTOOLS

- Uses all available photometry (e.g. K2+TESS)
- Models eccentricity & other planets in the system
- GPs for stellar variability
- Works on:
 - Candidates with two disparate transits
 - Single transits with multiple gaps

Marginalisation!

- Uses Hamiltonian Monte Carlo (with Dan Foreman-Mackey's implementation of PyMC3: exoplanet)
- Open source python https://github.com/hposborn/MonoTools

CANDIDATES

- >3000 in total
- Everything from published & confirmed planets to low-significance candidates from amateurs
- Many are False-positives
- Too many to manually search/vet!

Need automated vetting for monotransit candidates...

MONOTOOLS VETTING

Bayesian model comparison with the transit lightcurve:

- A transit model
- Variability (sin & polynomial)
- Instrumental effect (step model)

MONOTOOLS VETTING

Bayesian model comparison with other time-series:

- Background flux (to identify asteroids)
- Centroids (to identify EBs)

MONOTOOLS VETTING

Model comparison on other data:

- Background timeseries (to identify asteroids)
- Centroids (to identify EBs)

CANDIDATES

MCMC fits not yet complete - these are initial best-fit values*

MCMC fits not yet complete - these are initial best-fit values*

TIC 128...

TIC 128...

Naked-eye host star (V=6)

Neptune-radius planet (4.6Re) [jd]

RVs show active star but planetary-mass companion

1601.8 1602.0 1602.2 1602.4 1602.6 1601.6 time [HJD-2457000]

TIC 128...

Naked-eye host star (V=6)

Neptune-radius planet (4.6Re)

RVs show active star but planetary-mass companion

Model prefers P=12d period in gap (σP~8%)

101-411

TOI-411

3-planet system:

- Single-transiting 2.9Re mini-Neptune
- Depth only is 500ppm

TOI - 4]]

3-planet system:

- Single-transiting 2.9Re mini-Neptune
- Depth only is 500ppm
- Likely has P=40-60d (σP~20%)

101-1812

TOI 1812

101-1812

Predicted 48d period with prob~90%

101 1812

TOI 1812

Outer planet:

- 9Re giant planet
- Has complex period posterior
- 60-80d should be covered by S25
- SG1 observations rule out gaps around 100d
- P=125±20d looking likely $(\sigma P\sim 16\%)$

CONCLUSIONS

- >500 planet candidates missed by transit surveys
- Some are interesting candidates which could be confirmed and explored in the future.
- A uniform catalogue benefits follow-up teams who can prioritise based on candidate parameters.
- Catalogue will be published soon
- Code is publically available at <u>https://github.com/hposborn/MonoTools</u>

THANKS! QUESTIONS?

Hugh Osborn, MIT/University of Bern

