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[HE PROBLEM:
FROM RAW DATATO PLANETS






KEPLER & TESS PIPELINES

Target Pixel Smith+2012, Stumpe+2012
File (TPF)
Aperture Photometry &
Systematic Correction
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KEPLER & TESS PIPELINES

Target Pixel
File (TPF)

Relative Brightness

2180
BJD - 2454833

Period [days]

Relative Brightness

0
Hours from Midtransit







KEPLER & TESS PIPELINES

Target Pixel Smith+2012, Stumpe+2012 Jenkins+2010, Seader+2013

File (TPF)

Wu+2010

Data Validation (DV)

Aperture Photometry &
Systematic Correction
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Transiting Planet
Search (TPS)

Threshold Crossing
Event (TCE)

CCCCCC

Exoplanet Batalha+2013, Burke+2014, Rowe+2015, Mullally+2015
Catalogues
o Follow-up observations Candidate Classification

: ? I.e. Human vetting

Confirm/statistically
validate planets




MANUAL VETTING

Used for Kepler on all Quarters (later used as labels for machine learning)

Current TESS team: 21 vetters. >200 human hours per sector



MANUAL VETTING

Can a machine do better?



AUTOVETTER - RANDOM FORESTS

The Kepler team also produced a random
forest - MacAuliff et al, (2015)

Used 230 features calculated from
candidate lightcurve, model fits, etc.

3 output classes: planet, astrophysical
dip (e.g. EBs) & non-transiting
phenomena
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94.15% precision & 97.2% average
precision (on human-labelled data)
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Non-Transiting Phenomena Vote Fraction
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SHALLUE £T AL 2013

Astronet - Shallue & Vanderburg (2018)

e Deep Convolutional Neural Net

e Inputs are “local” and “global” transit view of
each candidate (TCE)

e Two disjoint 1D convolutional columns + 4 fully
connected layers

e Qutput is binary classifier in the range [0,1]

(c) TCE 5130380-2

Rkomasamasas s

FC-512

Global View (1 x 2001)

Local View (1 x 201)




DEVELOPMENTS ON ASTRONET

Application to K2 data e, Sl | o
(Dattilo et al 2019). '

PC
—10+ TIC 25155310

Application to TESS vetting:
Yu et al (2019)
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Included secondary eclipse
region as an input.

v .
_1.00} TIC 80338438

Currently used in TESS
vetting at MIT.
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TE53 INPUT DATA & LABELS

e 4 Simulated sectors - i.e. we
know the exact ground-truth

e Pixel-level signal injection,
processed with the TESS pipeline Junk/

Unknown
e ~16,000 candidates, ~14% planets signals

e Preprocessed the data following
Shallue & Vanderburg

Osborn, Ansdell, Ioannou,
Sasdelli, et al. (2019)



ASSESSING MODEL PERFORMANICE

Definitions

o

False
Positives

False

S | Negatives

False
Positives

PL
Predicted

False
Negatives




ASSESSING MODEL PERFORMANICE

Precision




ASSESSING MODEL PERFORMANICE

Recall




ASSESSING MODEL PERFORMANICE

Precision—-Recall SN |
Curve ~




ASSESSING MODEL PERFORMANICE

class: 62.31% = pottedplant AP
1.0

Average Precision

- Weighted average of precision
for all classes.
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- Functionally similar to Area
Under Curve (AUC) for a
multi-class classifier - 1i.e.
probability a random positive
sample is correctly predicted
at any P-R threshold

Predicted



DOMAIN KNOWLEDGE

CENTROIDS

e Position of centre of light over time

e Important for identifying background EBs

Exoplanet
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Local View

Global View

LOCAL VIEWS GLOBAL VIEWS '

(2 x201) (2 x 2001)

\ / light curves "
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CONV-5-32

MAXPOOL-7-2 Dl MAXPOOL-5-2 :

CONV-5-64
CONV-5-64

: MAXPOOL-5-2 :

CONV-5-128
CONV-5-128

MAXPOOL52 ) -
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© LOCAL VIEWS GLOBAL VIEWS '

(2x201) (2 x 2001)

DOMAIN KNOWLEDGE - STELLAR PROPERTIES A
e From stellar properties catalog: mass, gm%%% ; é%%"%
radius, density, logg, metallicity gmmmm ; %§§“§

CONV-5-64

e Important for identifying, e.g., giant star
binaries

i (mapoorsz)
CONV-5-128
CONV-5-128

KOI-977 [Teruyuki et al. 2014] mmmn§
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e Centroids & Stellar info both
improve performance

e Also helped by cross
validation & model ensembling

= Exonet-Stellar
== Exonet-Centroids

0.5 0.6

0.7
Recall

0.8




DATA AUGMENTATION

e Modify input data to create

“new” data for the neural net,

preventing overfitting

Exonet:

Exonet

Exonet

Exonet

Exonet

no augmentation
Gaussian
Xmirror

xshift

all

Avg. Precision
85.2%
89.6%
90.4%
90.5%

92.7%

Precision

= all

= all - x_shift

= all - mirror

= all - Gaussian Noise

0.4

Recall,

0.6

Better model
performance



ENSEMBLING & CROSS-VALIDATION
—

Ensembling / “bagging”:

Taking average of models
applied to test data

Cross Validation

Multiple Validation sets = multiple trained models

*always need test set



KEPLER PERFORMANICE

e Thanks to domain knowledge,
augmentation, ensembling,
etc - Exonet-Kepler -improves
on Astronet, and is the best
classifier of Kepler
candidates yet.
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== = Astronet

=== Exonet

=== Exonet-Stellar
=== Exonet-Centroids

0.7
Recall




KEPLER PERFORMANICE

e Thanks to domain knowledge,
augmentation, ensembling,
etc - Exonet-Kepler -improves
on Astronet, and is the best
classifier of Kepler
candidates yet.

Autovetter

Astronet

Exonet

Planet
Precision

94.15%

95.8%

97.5%

Avg.
Precision

97.19%

95.5%

98.0%



KEPLER PERFORMANCE

Improved Performance for Lowest SNR Transits
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15-20% gains 1in
Astronet recall for
Exonet ' Earth-sized planets

14 16 18 20 ' 10 12 14 16 18 20
Transit SNR Transit SNR




CLASSIFYING TESS DATA

Slightly modified from Kepler -> TESS

Added additional transit-derived
information

Reduced bins from 2001 to 1001

Used multi-class modelling

Osborn, Ansdell, Ioannou,
Sasdelli, et al. (2019)
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BALANCED BATCH SAMPLING

e Models tend to predict the majority class 1in
unbalanced data

e Re-balancing means that each epoch sees same
number of samples from each - helps training

_ A

BEB EB




PERFORMANCE ON TESS STMULATIONS

Binary

3-class

4-class

Planet

Not Planet

Planets

EBs

Unknown

Planets

EBs

BEBs

Unknown

Planet
Precision

94.8
89.1
87.4
88.5

94.6

Planet | Av.
Recall | Precision
87.8 95.2
98.5 99.4
90.1 95.6 5
‘@
‘O
95.1 96.9 £
94.9 97.7
88.8 94 .4 2_C|ass
3-class
91.7 94.7 2 4-C|ass
Multimodel
81.7 91.7 Mean
Median
95.5 97.8

0.7 0.8
Recall




3-(LASS MODEL

284 .
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88%
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Ground Truth

UNK_Med
UNK_Av

- PL_Med

- PL_Av
EB_Med
EB_Av




§-CLASS MODEL

Precision

UNK_Med
UNK_Av
PL_Med
PL_Av
EB_Med
EB_Av
BEB_Med
BEB_Av

0.2

Recall

0.6

PL

gg Ground Truth




PERFORMANCE AS A FUNCTION OF SNA

@ Recall deteriorates at low 08
SNR

e 70% precision/accuracy 1in
7<SNR<8.5 range

e “Unknown” consistently
accurate - model has learnt
systematic features



COMPARISON WITH ANSDELL ET AL, 2011

Average Precision on planets
Kepler | 98.5%
TESS  95.6%

A Monotransit flagged as periodic in real TESS data.

<+ Why?

e Labels: Human vetting vs. Simulated ground truth
¢ Minimum transits: Kepler = 3 - vs - TESS = 2
e “Near misses” - 196 “false positives” are planets

o 44% from monotransits
o 25% from period confusion

e Including “near misses” - planet precision from 90.3% to
95.1%



APPLICATION TO REAL TESS DATA

Far faster than other TESS vetting methods!

e ~60 minutes to pre-process lightcurves
e 5 minutes to predict with trained model on one GPU

But real data # simulated data

e Different noise characteristics
e Do injections match reality?
e No “ground truth” to make comparisons

TESS has 2 candidate pipelines producing candidates. Overlap
is not perfect.



APPLICATION TO REAL TESS DATA

A1l TOIs 1n Sectors 1-5

Our model thinks

’;////'30% are noise...

Recall of only 61%

on TOIs

™| 14 we suggest

are EBs

TOIs from QLP FFI
pipeline not 1in
our candidate list




NEW PREDICTED PLANETS

>100 new candidates from
model predictions

TID177170266

TID389669796

Problems:

- Many giant binaries
in predicted sample

- Some targets share S s WA e A e fﬁﬁgmwﬁﬁ
the same period &

TID3005794727 ~vor® ' o BRSOl
e et ione ’
from a bright binary m

77036769




CONCLUSION

e Machine Learning using “domain knowledge” enables fast & more
accurate classification of transiting planet candidate vetting.

e Kepler-ExoNet is the best-performing model yet tested, with a
precision on Kepler candidates of 97.5%

e TESS-ExoNet also performs well, achieving 90-95% precision on
simulated training set.

e However, models trained on simulations do not perform as well on
real data!

e We have identified promising new candidates missed by manual
vetters.



THANKS!
ANY QUESTIONS!

Hugh Osborn

@exohugh



CLASSIFICATION WITH
MACHINE LEARNING
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Sample to be

HERN[HI
Decision Tree |
C|assiﬁer Are they an astronomer?
Yes No
Do they have a beard?
Yes No
Hair longer than 5cm?
Yes No
German?
Yes A
Dan (Hugh, etc)

" Predicted class




Decision Tree

Classifier

Sample to be
classified

Does it have a secondary eclipse

Yes No

Is the modelled albedo >1

Yes

No

Eclipsing Binary

viaiie

Blended Eclipsing =~ Hot Jupiter

Bw—.[ﬁ.

@] e



How can we classify with minimal human processing?

With Machine Learning



MACHINE LEARNING

v 4 0 500
S e e Machine Learning
<) English

Where is the train station?

Deep Learning

«) Spanish {:7
¢Donde esta la estacion de tren?

Neural Nets

Convolutional
Neural Nets

Translation Self-driving cars



DECISION TREES

e Decision trees are the simplest
form of machine learning

e The thresholds and position of each
decision node are varied until
error 1s minimised.

Problems:

e Decision thresholds are linear (eg
1D)

e Requires 1input of ‘features’
derived from data




ROBOVETTER - DECISION TREE

“Robovetter” - Thompson et al
2017.

Decision tree classifier used to
produce Kepler’s homogenous
catalogue in DR25.

Used features processed from
lightcurve.

Achieved a recall of around 80%
on injected data.




RANDOM FORESTS

e Each tree sees random subset of whole dataset
e Each decision step uses random selection of available



RANDOM FORESTS

While each tree splits
the data “linearly”,
averaging of many trees
approximates non-linear
splits in data.




KOPLANET CLASSIFICATION WITH KNNS

Thompson et al (2015).

KIC 10790706
10g, (T op) = -2.3313

-~
A-u‘ B .‘.f ~¢~
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Rel. Flux (ppt)
Norm. Flux

KIC 10790706

KIC 8651551
log, (T, op) = -2.4093

Used a “K-Nearest
Neighbours” (KNN)
unsupervised approach.

e

Rel. Flux (ppt)
Norm. Flux

COOSS oou

KIC 10971944
10g, (T p) = -2.2925

Norm. Flux

Takes average of
nearest labelled
features.

KIC 11670605
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KIC 10419797
'°9|0(TLPp) = -2.4723

Used as inputs binned &
normalised phase-folded
transits.

I it E ot

Norm. Flux

Rel. Flux (ppt)
o

KIC 10419797
Periad 87.14d
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NEURAL NETWORKS

e Neural Networks are not inherently “linear” - can better
map irregular parameter spaces

e Hidden layers allow “abstraction” - acts like a new
dimension in which to “fold” the (lower dimensionality)




UNSUPERVISED LEARNING (SOMS)

Armstrong et al, 2016

Self-Organising Map (SOM) -
a type of neural network
which reduces dimensionality

without any supervisioletached EBs
Contact EBs

Creates isolated regio%§g€ﬁ$
self-similar input data

Performed on 4 K2 campaigns.

Pixel position used an input
into Random Forest.

SOM X Pixel




SELF ORGANISING MAPS FOR EXOPLANETS

Armstrong et al (2017)

SOM and random forest
applied to Planet
candidates in K2 & Kepler

EBs E

~T79% accuracy on KeplePanets
planets

10

SOM Pixel Index (X) ,

uoiuJodoud 19ueld




CONYVOLUTIONAL NEURAL NETWORKS

Machine Learning

& i 7373 Il

Input Feature extraction Classification Output

Deep Learning

o — izt —

Feature extraction + Classification




CONYVOLUTIONAL NEURAL NETWORKS

| [TTTTTT)

sEEL L DL

BEEEREEE

= T A ]
12 . M 3
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN co:mg:uo SOFTMAX

N

FEATURE LEARNING CLASSIFICATION

[l
i

e Raw image “convolved” with range of filters (which
themselves are trained with back propagation)




CNNS FOR ATMOSPHERTC RETRIEVAL

log(H0) = ~3.65:3 1§

Waldmann (2015) & Zingales g * TauREx Bayesian model
(2018) - RoBErt using Neural : NI
networks : |

® EX0GAN prediction

log(CO;) = ~6.41:8f

‘;

10g(CH,) = —4.93*3 %%

o
N
'S
(o)

T = 1228.37448%]°
0 0

Transit Depth (R,/R;)
Scale Height

Wavelength (um)




GROUND-BASED TRANSITS WITH KF & CNNS

Percent Correct Predictions CNN Confusion Matrix (fraqtjpn)

68.2602 10.2665 15.9091 5.56426

Schanche et al. (2018)

82.1497 4.51056 7.96545 5.37428

- 8.43373 88.253 0.301205 | 3.01205
- 7.50507 - 87.2211 5.27383

+ 10.8959 5.56901 12.8329 70.7022

EB/Blend
EB/Blend

Classified WASP planet
candidates with both
Random Forest and

. 4.15879 0.378072 91.6824 3.78072
Convolutional Neural

N e tWO I k ° 1.51844 0.867679 8.67679 88.9371

[

o 2.08333 2.08333 2.08333

WASP disposition

WASP disposition
Vv

\

CNN gives better average
precision, but random
forest performs best on
planets:

MEarth used Neural



CNNS FOR EXOPLANET DETECTION

Two parallel papers using
neural networks to detect

exoplanets:
Zucker et al, (2017)

Pearson et al, (2017)

Phase Folded

Difficult as neural networks
cannot natively learn

“per'iod'iC'ity” . Period (d)

True: 16.34

Data: 16.55

ey
©
o
o
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Neither deal with classifying
real planets vs false
positives

Probability

BJD-2454833 (days)




CLASSIYING TESS STMULATION

Loss per Epoch Average Precision per Epoch Accuracy per Epoch

k=2
validation
training

I
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Osborn, Ansdell, loannou, Sasdelli, et al. (subm)




