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The problem:
From raw data to planets



Kepler: continuous FOV at 30-min 
cadence for 4yr mission lifetime

TESS: FOV shifts every month to cover 
the whole sky at 2-min cadence



Typical Kepler/TESS Raw data

“Postage stamps” for target stars



Kepler & TESS pipelines
Aperture Photometry & 
Systematic Correction

Target Pixel 
File (TPF)

Smith+2012, Stumpe+2012



Simulated TESS Data



Jenkins+2010, Seader+2013Smith+2012, Stumpe+2012

Kepler & TESS pipelines
Target Pixel 
File (TPF)

Transiting Planet 
Search (TPS)

Threshold Crossing 
Event (TCE)

Aperture Photometry & 
Systematic Correction





The Data: False Positives

Eclipsing 
Binaries (EBs)

Background Eclipsing 
Binaries (BEBs)

Stellar Variability / 
Instrumental Noise



Kepler & TESS pipelines
Target Pixel 
File (TPF)

Transiting Planet 
Search (TPS)

Threshold Crossing 
Event (TCE)

Jenkins+2010, Seader+2013

Candidate Classification
I.e. Human vetting

Batalha+2013, Burke+2014, Rowe+2015, Mullally+2015Exoplanet 
Catalogues

Aperture Photometry & 
Systematic Correction

Smith+2012, Stumpe+2012

Data Validation (DV)

Wu+2010

Follow-up observations

Confirm/statistically 
validate planets



Manual vetting

Used for Kepler on all Quarters (later used as labels for machine learning)

Current TESS team: 21 vetters. >200 human hours per sector



Manual vetting

Can a machine do better?



Autovetter - Random Forests
The Kepler team also produced a random 
forest - MacAuliff et al, (2015)

Used 230 features calculated from 
candidate lightcurve, model fits, etc.

3 output classes: planet, astrophysical 
dip (e.g. EBs) & non-transiting 
phenomena

94.15% precision & 97.2% average 
precision (on human-labelled data)



Shallue & Vanderburg 2018
Astronet

● Deep Convolutional Neural Net
● Inputs are “local” and “global” transit view of 
each candidate (TCE)

● Two disjoint 1D convolutional columns + 4 fully 
connected layers

● Output is a classification in the range [0,1]



Developments on AstroNet
Application to K2 data 
(Dattilo et al 2019).

Application to TESS vetting: 
Yu et al (2019)

Included secondary eclipse 
region as an input.

Currently used in TESS 
vetting at MIT.



Our FDL project

“Scientific Domain Knowledge Improves Exoplanet Transit Classification with 
Deep Learning”, Ansdell et al (2018) https://arxiv.org/abs/1810.13434 

“Rapid Classification of TESS Planet Candidates with Convolutional Neural 
Networks”, Osborn et al (2019) https://arxiv.org/abs/1902.08544 

https://arxiv.org/abs/1810.13434
https://arxiv.org/abs/1902.08544


● 16,000 Threshold Crossing Events (TCEs) from Kepler DR24

● Labelled by human vetters

● ~25% planets & ~75% false positives

● Preprocessed the data following                        
Shallue & Vanderburg:
○ Detrended lightcurve
○ Phase-folded onto TCE period
○ Binned to global & local view

Kepler Input Data & Labels



TESS Input Data & Labels
● 4 Simulated sectors - i.e. we 

know the exact ground-truth

● Pixel-level signal injection, 
processed with the TESS pipeline

● ~16,000 candidates, ~14% planets

● Preprocessed the data following 
Shallue & Vanderburg

Junk/
Unknown 
signals

Planets

Various 
BEB/EB false 

positives



True 
Positives

Definitions

Assessing Model Performance

False 
Positives

False 
Positives

False 
Negatives

False 
Negatives



Precision

* also known as accuracy

Assessing Model Performance



Recall

Assessing Model Performance



Assessing Model Performance

Precision-Recall 
Curve



Assessing Model Performance

Average Precision

- Weighted average of precision 
for all classes.

- Functionally similar to Area 
Under Curve (AUC) for a 
multi-class classifier - i.e. 
probability a random positive 
sample is correctly predicted 
at any P-R threshold



● Position of centre of light over time
● Important for identifying background EBs

Domain Knowledge - Centroids



● From stellar properties catalog: mass, 
radius, density, logg, metallicity

● Important for identifying, e.g., giant star 
binaries

KOI-977  [Teruyuki et al. 2014]

Domain Knowledge - Stellar properties



●

●

Performance With Domain Knowledge
Better model 
performance



Data Augmentation
● Modify input data to create 

“new” data for the neural net, 
preventing overfitting

Avg. Precision

Exonet: no augmentation 85.2%

Exonet - Gaussian 89.6%

Exonet - xmirror 90.4%

Exonet - xshift 90.5%

Exonet - all 92.7%

Better model 
performance



Training

Ensembling & Cross-Validation

Validation

All samples

Testing

Cross Validation



Kepler Performance
●



●

Kepler Performance



Improved Performance for Lowest SNR Transits

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

15-20% gains in 
recall for 
Earth-sized planets

Transit SNRTransit SNR

Kepler Performance



Classifying TESS Data
Slightly modified from Kepler -> TESS

● Added additional transit-derived 
information

● Reduced bins from 2001 to 1001

● Used multi-class modelling



Balanced Batch Sampling
● Models tend to predict the majority class in 

unbalanced data
● Re-balancing means that each epoch sees same 

number of samples from each - helps training

PL

BEB

EB

UNK

PL UNK

EBBEB



Performance on TESS Simulations

Planet 
Precision

Planet 
Recall 

Av. 
Precision

Planets 90.4 90.1 95.6

EBs

Unknown



3-class model



4-class model



Performance as a function of SNR
● Recall deteriorates at low 

SNR

● 70% precision/accuracy in 
7<SNR<8.5 range

● “Unknown” consistently 
accurate - model has learnt 
systematic features



Kepler-TESS Comparison

● Labels: Human vetting vs. Simulated ground truth

● “Near misses” -  196 “false positives” are planets
○ 44% from monotransits
○ 25% from period confusion

● Including “near misses” - planet precision from 90.3% to 
95.1%

Precision on planets

Kepler 98.5%

TESS 90.3%
Why?

A Monotransit flagged as periodic in real TESS data. Precision on planets

Kepler 98.5%

TESS 95.7%



Application to real TESS data
Fast! Much quicker than other TESS vetting methods!

● ~60 minutes to pre-process lightcurves
● 5 minutes to predict with trained model on one GPU

But real data ≠ simulated data

● Simulated systematic noise ≠ real noise
● Injection populations ≠ real populations
● No “ground truth” to make comparisons



Application to real TESS data



New predicted planets
>100 new candidates from 
model predictions 

Problems:

- Many giant binaries 
in predicted sample

- Some targets share 
the same period & 
epoch - reflections 
from a bright binary



Conclusion
● Machine Learning using “domain knowledge” enables fast & more 

accurate classification of transiting planet candidate vetting.

● Kepler-ExoNet is the best-performing model yet tested, with a 
precision on Kepler candidates of 97.5%

● TESS-ExoNet also performs well, achieving 95% planet precision 
on simulated training set.

● However, models trained on simulations don’t (yet) perform as 
well on real data!

● We have identified promising new candidates missed by manual 
vetters.



Thanks! 
Any Questions?

Hugh Osborn

@exohugh



Classification with 
Machine Learning



< Ground truth

Classes >

Samples ^



Dan (Hugh, etc)

German?

Yes No

Hair longer than 5cm?

Yes No

Do they have a beard?

Yes No

Are they an astronomer?

Yes No

Sample to be 
classified

Decision Tree 
Classifier

??
^ Predicted class



Is the modelled albedo >1

Yes No

Does it have a secondary eclipse

Yes No

Sample to be 
classified

Decision Tree 
Classifier

Eclipsing Binary



How can we classify with minimal human processing?
With Machine Learning



Machine Learning

Translation  Self-driving cars        
Image recognition

Machine Learning

Deep Learning

Neural Nets

Convolutional 
Neural Nets



Decision Trees
● Decision trees are the simplest 

form of machine learning
● The thresholds and position of each 

decision node are varied until 
error is minimised.

Problems:

● Decision thresholds are linear (eg 
1D)

● Requires input of ‘features’ 
derived from data



Robovetter - Decision Tree
“Robovetter” - Thompson et al 
2017.

Decision tree classifier used to 
produce Kepler’s homogenous 
catalogue in DR25.

Used features processed from 
lightcurve.

Achieved a recall of around 80% 
on injected data.



Random Forests

● Each tree sees random subset of whole dataset
● Each decision step uses random selection of available 

features.



Random Forests

● While each tree splits 
the data “linearly”, 
averaging of many trees 
approximates non-linear 
splits in data.



Exoplanet Classification with KNNs
Thompson et al (2015).

Used a “K-Nearest 
Neighbours” (KNN) 
unsupervised approach.

Takes average of 
nearest labelled 
features.

Used as inputs binned & 
normalised phase-folded 
transits.



Neural Networks

Hidden Layers



Neural Networks
Training neural networks

● Quantify how poorly 
prediction was compared to 
ground truth

● Performance is then 
“back-propagated” through 
network to weights between 
neurons.

● These are adjusted such that 
the updated weight should 
decrease overall loss 
function - “gradient descent”



Neural Networks
● Neural Networks are not inherently “linear” - can better 

map irregular parameter spaces

● Hidden layers allow “abstraction” - acts like a new 
dimension in which to “fold” the (lower dimensionality) 
data.



Unsupervised Learning (SOMs)
Armstrong et al, 2016

Self-Organising Map (SOM) - 
a type of neural network 
which reduces dimensionality 
without any supervision.

Creates isolated regions of 
self-similar input data

Performed on 4 K2 campaigns.

Pixel position used an input 
into Random Forest.

Detached EBs
Contact EBs

RR Lyraes
Delta Scutis



Self Organising Maps for Exoplanets
Armstrong et al (2017)

SOM and random forest 
applied to Planet 
candidates in K2 & Kepler

~79% accuracy on Kepler 
planets

EBs
Planets



Convolutional Neural Networks



Convolutional Neural Networks

● Raw image “convolved” with range of filters (which 
themselves are trained with back propagation)

● Enables Feature extraction from the raw data (although raw 
data may need preprocessing)



CNNs for Atmospheric Retrieval
Waldmann (2015)  & Zingales 
(2018) - RoBErt using Neural 
networks

Cobb, Angerhausen, et al (subm.)



Ground-based transits with RF & CNNs
Schanche et al. (2018)

Classified WASP planet 
candidates with both 
Random Forest and 
Convolutional Neural 
Network.

CNN gives better average 
precision, but random 
forest performs best on 
planets:

MEarth used Neural 
Networks to determine 
which “triggers” the 
telescopes should follow, 
leading to LHS 1132 b 
Dittman et al. (2017)



CNNs for Exoplanet Detection
Two parallel papers using 
neural networks to detect 
exoplanets:

Zucker et al, (2017)

Pearson et al, (2017)

Difficult as neural networks 
cannot natively learn 
“periodicity”.

Neither deal with classifying 
real planets vs false 
positives



Classifying TESS Simulations

Osborn, Ansdell, Ioannou, Sasdelli, et al. (subm)


