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NASA Frontier Development Lab (FDL)

Space
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Diverse & Interdisciplinary teams
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THE PROBLEM:
FROM RAW DATA TO PLANETS




TESS: FOV shifts every month to cover
the whole sky at 2-min cadence







KEPLER & TESS PIPELINES

Target Pixel Smith+2012, Stumpe+2012
File (TPF)
Aperture Photometry &
Systematic Correction

"
Thermal
|\, transient
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KEPLER & TESS PIPELIN

Relative Brightness

BJD - 2454833

Period [days]

Relative Brightness

Hours from Midtransit







THE DATA: FALSE POSITIVES
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Eclipsing Background Eclipsing Stellar Variability /
Binaries (EBs) Binaries (BEBs) Instrumental Noise




KEPLER & TESS PIPELINES

Target Pixel Smith+2012, Stumpe+2012 Jenkins+2010, Seader+2013

File (TPF)

Wu+2010

Data Validation (DV)

Aperture Photometry &
Systematic Correction
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Transiting Planet
Search (TPS)

Threshold Crossing
Event (TCE)

CCCCCC

Exoplanet Batalha+2013, Burke+2014, Rowe+2015, Mullally+2015
Catalogues
o Follow-up observations Candidate Classification

: ? I.e. Human vetting

Confirm/statistically
validate planets




MANUAL VETTING

Used for Kepler on all Quarters (later used as labels for machine learning)

Current TESS team: 21 vetters. >200 human hours per sector



MANUAL VETTING

Can a machine do better?



AUTOVETTER - RANDOM FORESTS

The Kepler team also produced a random
forest - MacAuliff et al, (2015)

Used 230 features calculated from
candidate lightcurve, model fits, etc.

3 output classes: planet, astrophysical
dip (e.g. EBs) & non-transiting
phenomena
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94.15% precision & 97.2% average
precision (on human-labelled data)

o
(2]
|

©
w
|

<
~
|

©
w
|

o
N
|
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Non-Transiting Phenomena Vote Fraction




Logistic (sigmoid) output layer

SHALLUE & VANDERBURG 2013

FC-512

Astronet

e Deep Convolutional Neural Net

e Inputs are “local” and “global” transit view of
each candidate (TCE)

e Two disjoint 1D convolutional columns + 4 fully
connected layers

e Qutput is a classification in the range [0,1]

Local View (1 x 201)

(c) TCE 5130380-2
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Global View (1 x 2001)




DEVELOPMENTS ON ASTRONET

Application to K2 data e, Sl | o
(Dattilo et al 2019). '

PC
—10+ TIC 25155310

Application to TESS vetting:
Yu et al (2019)
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Included secondary eclipse
region as an input.

v .
_1.00} TIC 80338438

Currently used in TESS
vetting at MIT.
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QUR EDL PROJECT

“Scientific Domain Knowledge Improves Exoplanet Transit Classification with
Deep Learning”, Ansdell et al (2018)

“Rapid Classification of TESS Planet Candidates with Convolutional Neural
Networks”, Osborn et al (2019)


https://arxiv.org/abs/1810.13434
https://arxiv.org/abs/1902.08544
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TE53 INPUT DATA & LABELS

e 4 Simulated sectors - i.e. we
know the exact ground-truth

e Pixel-level signal injection,
processed with the TESS pipeline Junk/

Unknown
e ~16,000 candidates, ~14% planets signals

e Preprocessed the data following
Shallue & Vanderburg

Osborn, Ansdell, Ioannou,
Sasdelli, et al. (2019)



ASSESSING MODEL PERFORMANICE

Definitions

o

False
Positives

False

S | Negatives

False
Positives

PL
Predicted

False
Negatives




ASSESSING MODEL PERFORMANICE

Precision




ASSESSING MODEL PERFORMANICE

Recall




ASSESSING MODEL PERFORMANICE

Precision—-Recall SN |
Curve ~




ASSESSING MODEL PERFORMANICE

class: 62.31% = pottedplant AP
1.0

Average Precision

- Weighted average of precision
for all classes.
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- Functionally similar to Area
Under Curve (AUC) for a
multi-class classifier - 1i.e.
probability a random positive
sample is correctly predicted
at any P-R threshold

Predicted



DOMAIN KNOWLEDGE

CENTROIDS

e Position of centre of light over time

e Important for identifying background EBs

Exoplanet
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Local View

Global View

LOCAL VIEWS GLOBAL VIEWS '

(2 x201) (2 x 2001)

\ / light curves "
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(2x201) (2 x 2001)

DOMAIN KNOWLEDGE - STELLAR PROPERTIES A
e From stellar properties catalog: mass, gm%%% ; é%%"%
radius, density, logg, metallicity gmmmm ; %§§“§

CONV-5-64

e Important for identifying, e.g., giant star
binaries

i (mapoorsz)
CONV-5-128
CONV-5-128

KOI-977 [Teruyuki et al. 2014] mmmn§
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e Centroids & Stellar info both
improve performance

e Also helped by cross
validation & model ensembling

= Exonet-Stellar
== Exonet-Centroids

0.5 0.6

0.7
Recall

0.8




DATA AUGMENTATION

e Modify input data to create

“new” data for the neural net,

preventing overfitting

Exonet:

Exonet

Exonet

Exonet

Exonet

no augmentation
Gaussian
Xmirror

xshift

all

Avg. Precision
85.2%
89.6%
90.4%
90.5%

92.7%

Precision

= all

= all - x_shift

= all - mirror

= all - Gaussian Noise

0.4

Recall,

0.6

Better model
performance



ENSEMBLING & CROSS-VALIDATION
—

Ensembling / “bagging”:

Taking average of models
applied to test data

Cross Validation

Multiple Validation sets = multiple trained models

*always need test set



KEPLER PERFORMANICE

e Thanks to domain knowledge,
augmentation, ensembling,
etc - Exonet-Kepler -improves
on Astronet, and is the best
classifier of Kepler
candidates yet.
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== = Astronet

=== Exonet

=== Exonet-Stellar
=== Exonet-Centroids

0.7
Recall




KEPLER PERFORMANICE

e Thanks to domain knowledge,
augmentation, ensembling,
etc - Exonet-Kepler -improves
on Astronet, and is the best
classifier of Kepler
candidates yet.

Autovetter

Astronet

Exonet

Planet
Precision

94 .15%

95.8%

97.5%

Avg.
Precision

97.19%

95.5%

98.0%



KEPLER PERFORMANCE

Improved Performance for Lowest SNR Transits
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15-20% gains 1in
Astronet recall for
Exonet ' Earth-sized planets

14 16 18 20 ' 10 12 14 16 18 20
Transit SNR Transit SNR




CLASSIFYING TESS DATA

Slightly modified from Kepler -> TESS

Added additional transit-derived
information

Reduced bins from 2001 to 1001

Used multi-class modelling

Osborn, Ansdell, Ioannou,
Sasdelli, et al. (2019)
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BALANCED BATCH SAMPLING

e Models tend to predict the majority class 1in
unbalanced data

e Re-balancing means that each epoch sees same
number of samples from each - helps training

_ A

BEB EB




PERFORMANCE ON TESS STMULATIONS

Planet Planet Av.
Precision Recall Precision
Planets 90.4 90.1 95.6 §
k)
o
EBs 95.1 95.1 96.9 &=
Unknown 94 .8 94 .9 or7.7

2-class
3-class
4-class
Multimodel
Mean
Median

0.7 0.8
Recall
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Ground Truth

UNK_Med
UNK_Av

- PL_Med

- PL_Av
EB_Med
EB_Av




§-CLASS MODEL

Precision

UNK_Med
UNK_Av
PL_Med
PL_Av
EB_Med
EB_Av
BEB_Med
BEB_Av

0.2

Recall

0.6

PL

gg Ground Truth




PERFORMANCE AS A FUNCTION OF SNA

@ Recall deteriorates at low 08
SNR

e 70% precision/accuracy 1in
7<SNR<8.5 range

e “Unknown” consistently
accurate - model has learnt
systematic features



KEPLER-TESS COMPARISON

Precision on planets
Kepler | 98.5%
TESS | 96.3%

A Monotransit flagged as periodic in real TESS data.

< Why?

e Labels: Human vetting vs. Simulated ground truth

e “Near misses” - 196 “false positives” are planets
o 44% from monotransits
o 25% from period confusion

e Including “near misses” - planet precision from 90.3% to
95.1%



APPLICATION TO REAL TESS DATA

Fast! Much quicker than other TESS vetting methods!

e ~60 minutes to pre-process lightcurves
e 5 minutes to predict with trained model on one GPU

But real data # simulated data

e Simulated systematic noise # real noise
e Injection populations # real populations
e No “ground truth” to make comparisons



APPLICATION TO REAL TESS DATA

A1l TOIs 1n Sectors 1-5

Recall of only 61%
on TOIs

TOIs not 1in our
data sample

@

Our model thinks
30% are noise...

™| 14 we suggest

are EBs




NEW PREDICTED PLANETS

>100 new candidates from
model predictions

TID177170266

TID389669796

Problems:

- Many giant binaries
in predicted sample

- Some targets share S s WA e A e fﬁﬁgmwﬁﬁ
the same period &

TID3005794727 ~vor® ' o BRSOl
e et ione ’
from a bright binary m

77036769




CONCLUSION

e Machine Learning using “domain knowledge” enables fast & more
accurate classification of transiting planet candidate vetting.

e Kepler-ExoNet is the best-performing model yet tested, with a
precision on Kepler candidates of 97.5%

e TESS-ExoNet also performs well, achieving 95% planet precision
on simulated training set.

e However, models trained on simulations don’t (yet) perform as
well on real data!

e We have identified promising new candidates missed by manual
vetters.



THANKS!
ANY QUESTIONS!

Hugh Osborn

@exohugh



CLASSIFICATION WITH
MACHINE LEARNING
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Sample to be

HERN[HI
Decision Tree |
C|assiﬁer Are they an astronomer?
Yes No
Do they have a beard?
Yes No
Hair longer than 5cm?
Yes No
German?
Yes A
Dan (Hugh, etc)

" Predicted class




Decision Tree

Classifier

Sample to be
classified

Does it have a secondary eclipse

Yes No

Is the modelled albedo >1

Yes

No

Eclipsing Binary

viaiie

Blended Eclipsing =~ Hot Jupiter

Bw—.[ﬁ.

@] e



How can we classify with minimal human processing?

With Machine Learning



MACHINE LEARNING

v 4 0 500
S e e Machine Learning
<) English

Where is the train station?

Deep Learning

«) Spanish {:7
¢Donde esta la estacion de tren?

Neural Nets

Convolutional
Neural Nets

Translation Self-driving cars



DECISION TREES

e Decision trees are the simplest
form of machine learning

e The thresholds and position of each
decision node are varied until
error 1s minimised.

Problems:

e Decision thresholds are linear (eg
1D)

e Requires 1input of ‘features’
derived from data




ROBOVETTER - DECISION TREE

“Robovetter” - Thompson et al
2017.

Decision tree classifier used to
produce Kepler’s homogenous
catalogue in DR25.

Used features processed from
lightcurve.

Achieved a recall of around 80%
on injected data.




RANDOM FORESTS

e Each tree sees random subset of whole dataset
e Each decision step uses random selection of available



RANDOM FORESTS

While each tree splits
the data “linearly”,
averaging of many trees
approximates non-linear
splits in data.




KOPLANET CLASSIFICATION WITH KNNS

Thompson et al (2015).

KIC 10790706
10g, (T op) = -2.3313

-~
A-u‘ B .‘.f ~¢~
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s

Rel. Flux (ppt)
Norm. Flux

KIC 10790706

KIC 8651551
log, (T, op) = -2.4093

Used a “K-Nearest
Neighbours” (KNN)
unsupervised approach.

e

Rel. Flux (ppt)
Norm. Flux

COOSS oou

KIC 10971944
10g, (T p) = -2.2925

Norm. Flux

Takes average of
nearest labelled
features.

KIC 11670605
109, (T pp) = 23316 s,
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KIC 10419797
'°9|0(TLPp) = -2.4723

Used as inputs binned &
normalised phase-folded
transits.

I it E ot

Norm. Flux

Rel. Flux (ppt)
o

KIC 10419797
Periad 87.14d
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NEURAL NETWORKS

e Neural Networks are not inherently “linear” - can better
map irregular parameter spaces

e Hidden layers allow “abstraction” - acts like a new
dimension in which to “fold” the (lower dimensionality)




UNSUPERVISED LEARNING (SOMS)

Armstrong et al, 2016

Self-Organising Map (SOM) -
a type of neural network
which reduces dimensionality

without any supervisioletached EBs
Contact EBs

Creates isolated regio%§g€ﬁ$
self-similar input data

Performed on 4 K2 campaigns.

Pixel position used an input
into Random Forest.

SOM X Pixel




SELF ORGANISING MAPS FOR EXOPLANETS

Armstrong et al (2017)

SOM and random forest
applied to Planet
candidates in K2 & Kepler

EBs E

~T79% accuracy on KeplePanets
planets

10

SOM Pixel Index (X) ,

uoiuJodoud 19ueld




CONYVOLUTIONAL NEURAL NETWORKS

Machine Learning

& i 7373 Il

Input Feature extraction Classification Output

Deep Learning

o — izt —

Feature extraction + Classification




CONYVOLUTIONAL NEURAL NETWORKS

| [TTTTTT)

sEEL L DL

BEEEREEE

= T A ]
12 . M 3
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN co:mg:uo SOFTMAX

N

FEATURE LEARNING CLASSIFICATION

[l
i

e Raw image “convolved” with range of filters (which
themselves are trained with back propagation)




CNNS FOR ATMOSPHERTC RETRIEVAL

log(H0) = ~3.65:3 1§

Waldmann (2015) & Zingales g * TauREx Bayesian model
(2018) - RoBErt using Neural : NI
networks : |

® EX0GAN prediction

log(CO;) = ~6.41:8f

‘;

10g(CH,) = —4.93*3 %%

o
N
'S
(o)

T = 1228.37448%]°
0 0

Transit Depth (R,/R;)
Scale Height

Wavelength (um)




GROUND-BASED TRANSITS WITH KF & CNNS

Percent Correct Predictions CNN Confusion Matrix (fraqtjpn)

68.2602 10.2665 15.9091 5.56426

Schanche et al. (2018)

82.1497 4.51056 7.96545 5.37428

- 8.43373 88.253 0.301205 | 3.01205
- 7.50507 - 87.2211 5.27383

+ 10.8959 5.56901 12.8329 70.7022

EB/Blend
EB/Blend

Classified WASP planet
candidates with both
Random Forest and

. 4.15879 0.378072 91.6824 3.78072
Convolutional Neural

N e tWO I k ° 1.51844 0.867679 8.67679 88.9371

[

o 2.08333 2.08333 2.08333

WASP disposition

WASP disposition
Vv

\

CNN gives better average
precision, but random
forest performs best on
planets:

MEarth used Neural



CNNS FOR EXOPLANET DETECTION

Two parallel papers using
neural networks to detect

exoplanets:
Zucker et al, (2017)

Pearson et al, (2017)

Phase Folded

Difficult as neural networks
cannot natively learn

“per'iod'iC'ity” . Period (d)

True: 16.34

Data: 16.55

ey
©
o
o
o

Neither deal with classifying
real planets vs false
positives

Probability

BJD-2454833 (days)




CLASSIYING TESS STMULATION

Loss per Epoch Average Precision per Epoch Accuracy per Epoch

k=2
validation
training

I
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Osborn, Ansdell, loannou, Sasdelli, et al. (subm)




